SUMMATIVE ASSESSMENT: INDIVIDUAL PRESENTATION

Assignment Topic: Neural Network Models for Object Recognition Using Multi-
Track ML Approaches

1. Introduction



Computer vision is a field of Artificial Intelligence (Al) created with the purpose of training the
computer to interpret and identify image properties, named features, followed by eventually
reconstructing them (Fernandes, Dérea and Rosa, 2020). An important part of this field is
represented by image classification. The general idea of this method is to input a set of pictures
and train the computer to predict which class it belongs to, and it does this by analyzing and
identifying features like shapes, textures or edges.

The subject of the following project is classifying images from the CIFAR-10 dataset using
CNNs alongside a pretrained dataset, specifically MobileNetV2. The goal is to evaluate model
performance using a series of metrics such as accuracy, precision and confusion matrices, and
also experimenting with training configurations like epochs, learning rate and batch sizes.

2. Convolutional Neural Networks

A key player in the advancements of image classifications is deep learning, with Convolutional
Neural Networks (CNNs) becoming a powerful tool for solving such tasks. This algorithm works
by sliding, or convolving, a filter through an input image and multiplying its filter with the pixel
values of the image. CNNs use multiple random filters, each eventually specializing to identify a
certain type of pattern. The result is a feature map, which is then used for classification.

CNNs can analyze a variety of data types but have been especially good at image classification.
By analyzing the current literature, we can see that this algorithm is superior to classical ML
techniques or ANNs, showing a greater accuracy overall (Hasan et al., 2019; Salim and
Mohammed, 2024) if they are provided with enough data.

3. CIFAR-10 Dataset

The CIFAR-10 dataset is widely popular, frequently used in machine learning and computer
vision, alongside other datasets like ImageNet, which is the basis of the chosen pretrained
model that | used. Collected by Alex Krizhevsky and Geoffrey Hinton (2009) it consists of 60.000
color images belonging to 10 labels or classes, each class containing 6.000 images of 32x32
pixels in size. The dataset is split into 50.000 images for training and 10.000 images for testing.
It contains a balanced number of 10 labels, called classes, representing various shapes. The
labels include objects like airplane, cat, deer, dog and truck.

4. ML technique

In modern deep learning, a pre-trained model like VGG16 or MobileNetV2, which has already
learned how to extract meaningful patterns, is stripped of its head and the new model created is
trained on top of the pre-trained base to match our specific dataset.

Initially, the pre-trained model chosen was VGG16 (Simonyan and Zisserman, 2015), a larger
model with over 130 million parameters and many layers, that uses a simple architecture
consisting of repeated 3x3 convolutions followed by max-pooling layers. This type of model was
chosen thinking that by freezing most of it and fine-tuning, the result would be more accurate,
but it ended up being very resource consuming, slow and with a tendency for overfitting.



Other options were taken into consideration and ultimately the model selected was MobileNet
V2, a modern model shown to have great performance and offers quicker results with less
computational efforts (Kumar Shukla and Kumar Tiwari, 2023).

5. Data Preprocessing

This task makes use of the popular deep learning library TensorFlow. To begin, the CIFAR-10
dataset was loaded using Keras. Loading the labels from Keras means that the order of classes
is known, the exact ones being airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck.
Flattening the labels is crucial because, when loading the dataset, each label is an array in
itself. By flattening, 1D integer arrays were created, which is needed for proper TensorFlow and
NumPy function performance.

The training set was split further into training and validation sets using a classic 80%-20% split,
an important step for monitoring performance during training, especially since with smaller
datasets like CIFAR-10 there is a tendency to overestimate accuracy (Vabalas et al., 2019).

Normalization was applied to the image pixel values. As a result, all pixel intensities originally
ranging from 0O to 255 were scaled down to a range between 0 and 1 for better convergence
during training. Additionally, the pre-trained models make use of normalized data, so
unnormalized images are incompatible with their learned filters. The images were then resized
from their original 32x32 resolution to a 96x96 resolution, to match the input requirements of
MobileNetV2. A smaller resolution was chosen to limit memory use and speed up training
without compromising model performance.

For the loss function the categorical crossentropy was chosen, since it is widely used and
shows good performance. Because of this, one-hot encoding was applied to the labels, as the
model calculates probabilities across multiple classes, and the categorical crossentropy loss
function uses one-hot encoded vectors.

6. Model Architecture

The MobileNetV2 base was loaded excluding its final classification layers. Since this model is
already trained on a large dataset (ImageNet), those learned features need to be kept intact,
hence freezing the final layers.

To this base, a pooling layer was added. This particular layer compresses each one of the
feature maps to a single number, an alternative to picking the widely used maximum or average
value from small patches.

Furthermore, a dropout layer was added to prevent overfitting, alongside a dense layer with 256
units or neurons and a ReLU activation function. For the final dense layer, softmax activation
was used, since this is a multi-classification case.

7. Training Configuration

To explore the impact of training parameters, the following configurable variables were defined.
Batch size represents the number of processed samples before updating filter weights, and the



values 32 and 64 were used for fine-tuning. Epochs represent the number of passes through the
entire training dataset and multiple values ranging from 10 to 25 were used.

Another parameter was the number of nodes in the custom dense layer, varying between 128
and 256. And finally, one of the most important parameters that defines the step size at each
iteration while moving towards a minimum of the loss function, the learning rate. It was adjusted
during the multiple executions set for fine-tuning, starting with the default of 0.001 coming from
the Adam optimizer and experimented with 0.0001 and 0.0005.

Using the Adam optimizer with a custom learning rate allowed convergence fine-tuning,
meaning that the efficiency and accuracy of learning was slightly improved over the default
value. As previously mentioned, the model was compiled with categorical crossentropy as the
loss function, and finally the choice for the main metric was accuracy.

8. Model Training and Evaluation

Training was performed on the prepared training and validation datasets using the Keras API.
Training and validation metrics were continuously monitored to ensure the model did not overfit
the data.

After training, the model was evaluated on the test dataset. This provides an idea of the
performance of the freshly trained model. For more depth of analysis, some predictions on class
probabilities were made and then the most likely class labels were derived.

Various evaluation metrics for measuring the model performance were used, among these
being accuracy, meaning the percentage of correctly predicted labels, and also the confusion
matrix, comparing training versus validation loss and accuracy. Based on the confusion matrix,
for clarity and to add some aiding visual elements, a basic heatmap was created using Seaborn
and Matplotlib.

9. Results and Visualisation

The best-performing model used the MobileNetV2 architecture with the following configuration:
learning rate of 0.0001, batch size of 64, 25 epochs, and 256 dense units. This setup produced
a test accuracy of 82.56%, with the initial step starting at 43.3% and reaching a score of 87.55%
on the last epoch. While it is far from perfect, this result is solid considering the training
constraints.

The plotted loss and accuracy curves were used to visualise learning progression. In the
beginning, using the VGG16 pre-trained base, it was apparent from the first trial that the
improvement after each step was very small, and the final accuracy was only 69%. This could
be seen in both accuracy and loss curves, both hitting plateau quite early on. With the
MobileNetV2, the plots showed that the model improved smoothly with minimal signs of
overfitting. The results were slightly better when trained with a smaller learning rate, which is
why the final value ended up being 0.0001.

The heatmap of the confusion matrix was created using a magma colour palette, more of a
personal preference, but visually striking and a good choice for distinction. Looking at the



predicted versus true labels, some classes outperformed others. The lowest value corresponds
to class 5, represented by the label “dog”, and it was frequently misclassified as class 3,
represented by the label “cat”. Similarly, although at a smaller rate, class 4 which is the label
“deer” was misclassified as class 2, which is the label “bird”. It is interesting to observe that
misclassifications occur mostly with the same “type” of objects, meaning that the model possibly
learned to discern between metal and organic matter through texture.

10. Challenges and Potential Improvements

From the beginning the biggest challenge was using VGG16, which caused out-of-memory
(OOM) errors due to its high computational demands coupled with the large 224x224 image size
requirement. This was supposed to be resolved by using Google Colab, since my own
computer’s specifications proved to be poor, but even by using a more powerful GPU the issue
was not solved. The final solution was to downsize the input images to 96x96 and switch to
MobileNetV2.

This change was beneficial, but although switching to MobileNetV2 was more efficient, the
multiple small fixes used for fine-tuning lowered the overall chances of achieving higher
accuracy.

Possible improvements might include selectively unfreezing the last few layers of the pre-
training model, making more room for MobileNet to adapt to the CIFAR-10 dataset. Another
option that would possibly work is data augmentation. This technique involves applying
transformations like random cutouts, rotation, and noise to the images in the dataset. Research
has shown that data augmentation could make the model learn more efficiently, because
increasing the diversity of the training data improves model generalization (Kumar et al., 2024).

A final example would be using techniques such as exponential decay or learning rate reduction
instead of the static approach. This means that the model would automatically detect when it
hits a plateau and can dynamically adjust the learning rate based on it.

12. Conclusion

This project aimed to create an image classification pipeline for the CIFAR-10 dataset using
transfer learning together with a CNN algorithm. The final model achieved an accuracy of
approximately 82%, a good result considering the multiple challenges faced by hardware
limitations.

The process involved analyzing resources in search of a proper technique, choosing a pre-
trained model to use for transfer learning, data preprocessing, the construction of a custom
classification head for the MobileNetV2 base, model training, evaluations on performance and
some visual analysis. Ultimately, the use of a more lightweight yet comprehensive pretrained
model helped with the fine-tuning process in search of higher classification accuracy.

Overall, the project highlights the feasibility of transfer learning, especially when dealing with
limited resources. It is worth noting that more powerful hardware, such as a higher-end GPU,
would most likely produce better results. Enhanced computational resources means that the



model can make use of larger input sizes, the computer can sustain longer training durations
and multiple fine-tuning attempts (Samuel, Sebe and Almeida, 2020).
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