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1. Introduction 



Computer vision is a field of Artificial Intelligence (AI) created with the purpose of training the 

computer to interpret and identify image properties, named features, followed by eventually 

reconstructing them (Fernandes, Dórea and Rosa, 2020). An important part of this field is 

represented by image classification. The general idea of this method is to input a set of pictures 

and train the computer to predict which class it belongs to, and it does this by analyzing and 

identifying features like shapes, textures or edges.  

The subject of the following project is classifying images from the CIFAR-10 dataset using 

CNNs alongside a pretrained dataset, specifically MobileNetV2. The goal is to evaluate model 

performance using a series of metrics such as accuracy, precision and confusion matrices, and 

also experimenting with training configurations like epochs, learning rate and batch sizes. 

2. Convolutional Neural Networks 

A key player in the advancements of image classifications is deep learning, with Convolutional 

Neural Networks (CNNs) becoming a powerful tool for solving such tasks. This algorithm works 

by sliding, or convolving, a filter through an input image and multiplying its filter with the pixel 

values of the image. CNNs use multiple random filters, each eventually specializing to identify a 

certain type of pattern. The result is a feature map, which is then used for classification.  

CNNs can analyze a variety of data types but have been especially good at image classification. 

By analyzing the current literature, we can see that this algorithm is superior to classical ML 

techniques or ANNs, showing a greater accuracy overall (Hasan et al., 2019; Salim and 

Mohammed, 2024) if they are provided with enough data. 

3. CIFAR-10 Dataset 

The CIFAR-10 dataset is widely popular, frequently used in machine learning and computer 

vision, alongside other datasets like ImageNet, which is the basis of the chosen pretrained 

model that I used. Collected by Alex Krizhevsky and Geoffrey Hinton (2009) it consists of 60.000 

color images belonging to 10 labels or classes, each class containing 6.000 images of 32x32 

pixels in size. The dataset is split into 50.000 images for training and 10.000 images for testing. 

It contains a balanced number of 10 labels, called classes, representing various shapes. The 

labels include objects like airplane, cat, deer, dog and truck. 

4. ML technique 

In modern deep learning, a pre-trained model like VGG16 or MobileNetV2, which has already 

learned how to extract meaningful patterns, is stripped of its head and the new model created is 

trained on top of the pre-trained base to match our specific dataset. 

Initially, the pre-trained model chosen was VGG16 (Simonyan and Zisserman, 2015), a larger 

model with over 130 million parameters and many layers, that uses a simple architecture 

consisting of repeated 3x3 convolutions followed by max-pooling layers. This type of model was 

chosen thinking that by freezing most of it and fine-tuning, the result would be more accurate, 

but it ended up being very resource consuming, slow and with a tendency for overfitting. 



Other options were taken into consideration and ultimately the model selected was MobileNet 

V2, a modern model shown to have great performance and offers quicker results with less 

computational efforts (Kumar Shukla and Kumar Tiwari, 2023). 

5. Data Preprocessing 

This task makes use of the popular deep learning library TensorFlow. To begin, the CIFAR-10 

dataset was loaded using Keras. Loading the labels from Keras means that the order of classes 

is known, the exact ones being airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck. 

Flattening the labels is crucial because, when loading the dataset, each label is an array in 

itself. By flattening, 1D integer arrays were created, which is needed for proper TensorFlow and 

NumPy function performance.  

The training set was split further into training and validation sets using a classic 80%-20% split, 

an important step for monitoring performance during training, especially since with smaller 

datasets like CIFAR-10 there is a tendency to overestimate accuracy (Vabalas et al., 2019). 

Normalization was applied to the image pixel values. As a result, all pixel intensities originally 

ranging from 0 to 255 were scaled down to a range between 0 and 1 for better convergence 

during training. Additionally, the pre-trained models make use of normalized data, so 

unnormalized images are incompatible with their learned filters. The images were then resized 

from their original 32x32 resolution to a 96x96 resolution, to match the input requirements of 

MobileNetV2. A smaller resolution was chosen to limit memory use and speed up training 

without compromising model performance. 

For the loss function the categorical crossentropy was chosen, since it is widely used and 

shows good performance. Because of this, one-hot encoding was applied to the labels, as the 

model calculates probabilities across multiple classes, and the categorical crossentropy loss 

function uses one-hot encoded vectors. 

6. Model Architecture  

The MobileNetV2 base was loaded excluding its final classification layers. Since this model is 

already trained on a large dataset (ImageNet), those learned features need to be kept intact, 

hence freezing the final layers. 

To this base, a pooling layer was added. This particular layer compresses each one of the 

feature maps to a single number, an alternative to picking the widely used maximum or average 

value from small patches. 

Furthermore, a dropout layer was added to prevent overfitting, alongside a dense layer with 256 

units or neurons and a ReLU activation function. For the final dense layer, softmax activation 

was used, since this is a multi-classification case. 

7. Training Configuration 

To explore the impact of training parameters, the following configurable variables were defined. 

Batch size represents the number of processed samples before updating filter weights, and the 



values 32 and 64 were used for fine-tuning. Epochs represent the number of passes through the 

entire training dataset and multiple values ranging from 10 to 25 were used.  

Another parameter was the number of nodes in the custom dense layer, varying between 128 

and 256. And finally, one of the most important parameters that defines the step size at each 

iteration while moving towards a minimum of the loss function, the learning rate. It was adjusted 

during the multiple executions set for fine-tuning, starting with the default of 0.001 coming from 

the Adam optimizer and experimented with 0.0001 and 0.0005. 

Using the Adam optimizer with a custom learning rate allowed convergence fine-tuning, 

meaning that the efficiency and accuracy of learning was slightly improved over the default 

value. As previously mentioned, the model was compiled with categorical crossentropy as the 

loss function, and finally the choice for the main metric was accuracy. 

8. Model Training and Evaluation 

Training was performed on the prepared training and validation datasets using the Keras API. 

Training and validation metrics were continuously monitored to ensure the model did not overfit 

the data. 

After training, the model was evaluated on the test dataset. This provides an idea of the 

performance of the freshly trained model. For more depth of analysis, some predictions on class 

probabilities were made and then the most likely class labels were derived. 

Various evaluation metrics for measuring the model performance were used, among these 

being accuracy, meaning the percentage of correctly predicted labels, and also the confusion 

matrix, comparing training versus validation loss and accuracy. Based on the confusion matrix, 

for clarity and to add some aiding visual elements, a basic heatmap was created using Seaborn 

and Matplotlib. 

9. Results and Visualisation 

The best-performing model used the MobileNetV2 architecture with the following configuration: 

learning rate of 0.0001, batch size of 64, 25 epochs, and 256 dense units. This setup produced 

a test accuracy of 82.56%, with the initial step starting at 43.3% and reaching a score of 87.55% 

on the last epoch. While it is far from perfect, this result is solid considering the training 

constraints. 

The plotted loss and accuracy curves were used to visualise learning progression. In the 

beginning, using the VGG16 pre-trained base, it was apparent from the first trial that the 

improvement after each step was very small, and the final accuracy was only 69%. This could 

be seen in both accuracy and loss curves, both hitting plateau quite early on. With the 

MobileNetV2, the plots showed that the model improved smoothly with minimal signs of 

overfitting. The results were slightly better when trained with a smaller learning rate, which is 

why the final value ended up being 0.0001. 

The heatmap of the confusion matrix was created using a magma colour palette, more of a 

personal preference, but visually striking and a good choice for distinction. Looking at the 



predicted versus true labels, some classes outperformed others. The lowest value corresponds 

to class 5, represented by the label “dog”, and it was frequently misclassified as class 3, 

represented by the label “cat”. Similarly, although at a smaller rate, class 4 which is the label 

“deer” was misclassified as class 2, which is the label “bird”. It is interesting to observe that 

misclassifications occur mostly with the same “type” of objects, meaning that the model possibly 

learned to discern between metal and organic matter through texture. 

10. Challenges and Potential Improvements 

From the beginning the biggest challenge was using VGG16, which caused out-of-memory 

(OOM) errors due to its high computational demands coupled with the large 224x224 image size 

requirement. This was supposed to be resolved by using Google Colab, since my own 

computer’s specifications proved to be poor, but even by using a more powerful GPU the issue 

was not solved. The final solution was to downsize the input images to 96x96 and switch to 

MobileNetV2. 

This change was beneficial, but although switching to MobileNetV2 was more efficient, the 

multiple small fixes used for fine-tuning lowered the overall chances of achieving higher 

accuracy.  

Possible improvements might include selectively unfreezing the last few layers of the pre-

training model, making more room for MobileNet to adapt to the CIFAR-10 dataset. Another 

option that would possibly work is data augmentation. This technique involves applying 

transformations like random cutouts, rotation, and noise to the images in the dataset. Research 

has shown that data augmentation could make the model learn more efficiently, because 

increasing the diversity of the training data improves model generalization (Kumar et al., 2024). 

A final example would be using techniques such as exponential decay or learning rate reduction 

instead of the static approach. This means that the model would automatically detect when it 

hits a plateau and can dynamically adjust the learning rate based on it.  

12. Conclusion 

This project aimed to create an image classification pipeline for the CIFAR-10 dataset using 

transfer learning together with a CNN algorithm. The final model achieved an accuracy of 

approximately 82%, a good result considering the multiple challenges faced by hardware 

limitations. 

The process involved analyzing resources in search of a proper technique, choosing a pre-

trained model to use for transfer learning, data preprocessing, the construction of a custom 

classification head for the MobileNetV2 base, model training, evaluations on performance and 

some visual analysis. Ultimately, the use of a more lightweight yet comprehensive pretrained 

model helped with the fine-tuning process in search of higher classification accuracy. 

Overall, the project highlights the feasibility of transfer learning, especially when dealing with 

limited resources. It is worth noting that more powerful hardware, such as a higher-end GPU, 

would most likely produce better results. Enhanced computational resources means that the 



model can make use of larger input sizes, the computer can sustain longer training durations 

and multiple fine-tuning attempts (Samuel, Sebe and Almeida, 2020). 
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