
1

Airbnb Business Analysis Using a Data Science Approach

Introduction.

The aim of this report is to present to the executive team of Airbnb a comprehensive

analysis of a dataset which contains valuable information about the listing activity in

New York during the year 2019. The scope is to provide with accurate predictions

about the Airbnb trends in order the executive team to improve profitability and

maximize their business actions in that particular area.

Airbnb is a company founded in 2007 and offer short and long-term homestays. The

company main focus is to offer unique experiences and stays which allows its guests

to have a better and unique connection with the local communities (Airbnb, Inc.,

2025).

The dataset used for the analysis is “AB_NYC_2019” a dataset downloaded from the

platform Kaggle which is “a data platform that includes sections titled Competitions,

Datasets, Code, Discussions, Learn, and, most recently, Models.” (Preda, 2023).

The dataset contains 48,895 rows of data and sixteen columns.

For the analysis of the dataset and for the visualisation, Google Colab has been

used. In Appendix A the phyton code for the Machine Learning Project can be found.

Business Context and Business Questions.

Based on the first check of the above-mentioned dataset, two primary business

questions have been selected to be developed and analysed through a classic

Machine Learning (ML in this report) methodology.

The questions are the following:

Question 1: What factors have the strongest influence on Airbnb listing prices in New

York City?

Question 2: How do neighbourhood characteristics and listing attributes interact to

influence Airbnb pricing patterns across different New York City boroughs, and what

pricing strategies can hosts implement to optimize revenue based on these spatial

dynamics?

Question 1. Visualisation and Insights.

To answer the first question, Regression Analysis has been used. Various models

have been tested in order to find the best performer: Linear Regression, Random

Forest, Ridge, Lasso cross-validation and, based on the overall results, the best

performer has been the Random Forest.

Random Forest results in a R squared of 0.490 (49%) which, from a business

perspective is a good results and offer the executive Airbnb team useful insights for

business decisions. In Appendix A the complete coding of the Random Forest

analysis can be consulted.

2

Fig. 1 – Random Forest Feature Importances (Appendix A).

The results visible in Figure 1 highlight the significant importance of the type of room

(entire home or apartment) as a main factor influencing the prices in New York

Airbnb’s listing. Is evident that the entire home or apartment is the biggest value

proposition and the host is willing to pay a premium price for.

Location is another crucial factor influencing the price a host is willing to pay. A

strategic geographical position within the city is an important factor influencing the

rental price.

Last factor influencing the Airbnb listing price is the availability patterns which

highlight that a wise seasonal availability affects sensibly the price.

Is important to mention that reviews metrics, which could be consider as an important

influencer, is not affecting the prices as the three above-mentioned factors.

Those results could be very important for the Airbnb executive team to plan a

focused targeting of entire homes and apartments in strategic locations of the city

with a wide availability to increase revenues.

Question 2. Visualisation and Insights.

For analysing the neighbourhood characteristics and listing attributes in order to see

the interaction with the pricing pattern of Airbnb the first action has been identify

clusters in the city of New York. To obtain a clear map of clusters it has been used a

K-means clustering using mainly three scores: Elbow Method, Silhouette Score and

Calinski-Harabasz Score (Appendix A).

Five main clusters have been defined and, in figure 2, a Principal Component

3

Analysis (PCA) has been used to provide a visual representation of the 5 main

clusters discovered.

Fig. 2 – Principal Component Analysis of the five K. K-means clustering (Appendix A).

Among these five main clusters we have the number 1 (indicated as cluster zero in

Figure 2) which represents the high-price, low-availability. This cluster represents a

prime cluster for high-end customers willing to pay prime price for premium location

(Upper Manhattan) and all the benefits that these locations generate.

For the executive team of Airbnb the cluster number 2 (indicated as cluster one in

Figure 2) should be the one to invest time and effort in. It represents the mid-tier

pricing option with decent availability in an attractive and alive location (Central

Brooklyn). This area represents a remarkably interesting potential area for expansion

and market growth and the executive team could think about slightly increasing the

prices for this cluster and use it as a potentially strategic new area of focus.

Both of these clusters could represent a potential growth, but based on the findings

of the analysis, Brooklyn cluster (number 1 in figure 2) could be the short-term period

strategy to increase profitability and market share.

4

Conclusions and recommendations.

This analysis identifies three major factors that drive higher Airbnb prices in New York

City: listings located in premium areas such as Manhattan, properties listed as entire

homes or apartments, and consistent availability throughout the year.

The clustering analysis also highlights Brooklyn as a key area of opportunity. While it

may not be realistic to expect hosts to acquire new properties there, Airbnb can still

support growth in Brooklyn by enhancing platform visibility, targeted marketing, and

host-focused tools. This borough offers a strong balance of affordability and guest

demand, making it well-positioned for strategic investment at the platform level.

Looking ahead, improving pricing models by incorporating more detailed, location-

based context like proximity to subway stations, tourist attractions, or cultural events

could provide a more accurate reflection of listing value. As Bronnenberg, Dubé, and

Gentzkow (2012) explain, “geographic frictions play a significant role in shaping

consumer behaviour.” In other words, even minor differences in location can

influence booking decisions. By recognising and modelling these subtle spatial

dynamics, Airbnb can better align pricing recommendations with what guests are

actually willing to pay.

5

References:

Airbnb Inc. (2025) About Airbnb: What it is and how it works. Available from:

https://www.airbnb.com.sg/help/article/2503 [Accessed 2nd June 2025].

Bronnenberg, B. J., Dubé, J.-P., & Gentzkow, M. (2012) The Evolution of Brand

Preferences: Evidence from Consumer Migration. Journal of Marketing Research

49(1), 61–73. Available from: https://doi.org/10.1509/jmr.11.0203 [Accessed 7th

June 2025]

Preda, G. (2023) Developing Kaggle Notebooks : Pave Your Way to Becoming a

Kaggle Notebooks Grandmaster. First edition. Birmingham, England: Packt

Publishing Ltd. Available from: https://learning.oreilly.com/library/view/developing-

kaggle-notebooks/9781805128519/Text/Chapter_1.xhtml#_idParaDest-16 [Accessed

2nd June 2025].

https://www.airbnb.com.sg/help/article/2503
https://doi.org/10.1509/jmr.11.0203
https://learning.oreilly.com/library/view/developing-kaggle-notebooks/9781805128519/Text/Chapter_1.xhtml#_idParaDest-16
https://learning.oreilly.com/library/view/developing-kaggle-notebooks/9781805128519/Text/Chapter_1.xhtml#_idParaDest-16

6

Appendix A.

Machine Learning code (Phyton) used by the team to analyse the given dataset

“AB_NYC_2019”.

@title

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Input

from sklearn.compose import ColumnTransformer

from sklearn.preprocessing import StandardScaler, OneHotEncoder

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.decomposition import PCA

from sklearn.impute import SimpleImputer

from sklearn.linear_model import LinearRegression, Ridge, LassoCV,

ElasticNetCV

from sklearn.ensemble import RandomForestRegressor

from sklearn.metrics import mean_absolute_error, r2_score,

root_mean_squared_error, silhouette_score, calinski_harabasz_score

from sklearn.cluster import KMeans

data = pd.read_csv('AB_NYC_2019.csv')

data['room_type'].unique()

array(['Private room', 'Entire home/apt', 'Shared room'], dtype=object)

Data Cleaning

Copy data to avoid chained assignment warnings

data_encoded = data

data_encoded = data_encoded.copy()

Step 1: Fill missing values explicitly as strings

data_encoded['last_review'] = data_encoded['last_review'].fillna('2019-

01-01')

Step 2: Convert to datetime safely

data_encoded['last_review'] =

pd.to_datetime(data_encoded['last_review'], errors='coerce')

Step 3: Calculate days since last review

7

reference_date = pd.to_datetime('2019-06-30')

data_encoded['days_since_last_review'] = (reference_date -

data_encoded['last_review']).dt.days

Remove top 5% price outliers

upper_limit = data_encoded['price'].quantile(0.99)

print(f"99th percentile cutoff: ${upper_limit:.2f}")

data_encoded = data_encoded[data_encoded['price'] <=

upper_limit].copy()

One-hot encode room_type and neighbourhood_group

data_encoded = pd.get_dummies(

 data_encoded, columns=['room_type', 'neighbourhood_group'],

drop_first=False

)

Preview result

data_encoded

99th percentile cutoff: $799.00

print("Available columns:", data_encoded.columns.tolist())

Available columns: ['id', 'name', 'host_id', 'host_name',

'neighbourhood', 'latitude', 'longitude', 'price', 'minimum_nights',

'number_of_reviews', 'last_review', 'reviews_per_month',

'calculated_host_listings_count', 'availability_365',

'days_since_last_review', 'room_type_Entire home/apt',

'room_type_Private room', 'room_type_Shared room',

'neighbourhood_group_Bronx', 'neighbourhood_group_Brooklyn',

'neighbourhood_group_Manhattan', 'neighbourhood_group_Queens',

'neighbourhood_group_Staten Island']

print("Available columns:", data.columns.tolist())

Available columns: ['id', 'name', 'host_id', 'host_name',

'neighbourhood_group', 'neighbourhood', 'latitude', 'longitude',

'room_type', 'price', 'minimum_nights', 'number_of_reviews',

'last_review', 'reviews_per_month', 'calculated_host_listings_count',

'availability_365']

X = input feature = reviews_per_month / availability_365 y = what we want to predict =

reviews_per_month

Clustering

Step 1: Define features

cluster_features = [

 'minimum_nights','reviews_per_month','latitude', 'longitude',

 'calculated_host_listings_count', 'availability_365',

'days_since_last_review',

8

 'room_type_Entire home/apt', 'room_type_Private room',

'room_type_Shared room',

 'neighbourhood_group_Bronx', 'neighbourhood_group_Brooklyn',

 'neighbourhood_group_Manhattan', 'neighbourhood_group_Queens',

 'neighbourhood_group_Staten Island'

]

Step 2: Prepare data

X = data_encoded[cluster_features].copy()

X = X.fillna(0) # Handle missing values

Step 3: Scale features

scaler = StandardScaler()

X_scaled = scaler.fit_transform(X)

Step 4: Reduce to 2D using PCA

pca = PCA(n_components=2, random_state=42)

X_pca = pca.fit_transform(X_scaled)

Step 5: Try clustering with various k

ks = range(2, 11)

inertias, sil_scores, ch_scores = [], [], []

for k in ks:

 kmeans = KMeans(n_clusters=k, random_state=42, n_init=25)

 labels = kmeans.fit_predict(X_pca)

 inertias.append(kmeans.inertia_)

 sil_scores.append(silhouette_score(X_pca, labels))

 ch_scores.append(calinski_harabasz_score(X_pca, labels))

Step 6: Plot evaluation metrics

plt.figure(figsize=(15, 4))

plt.subplot(1, 3, 1)

plt.plot(ks, inertias, marker='o')

plt.title("Elbow Method")

plt.xlabel("Number of Clusters")

plt.ylabel("Inertia")

plt.subplot(1, 3, 2)

plt.plot(ks, sil_scores, marker='o', color='green')

plt.title("Silhouette Score")

plt.xlabel("Number of Clusters")

plt.ylabel("Silhouette Score")

plt.subplot(1, 3, 3)

plt.plot(ks, ch_scores, marker='o', color='red')

plt.title("Calinski-Harabasz Score")

plt.xlabel("Number of Clusters")

9

plt.ylabel("CH Score")

plt.tight_layout()

plt.show()

1. Select features for clustering

cluster_features = [

 'minimum_nights','reviews_per_month','latitude', 'longitude',

 'calculated_host_listings_count', 'availability_365',

'days_since_last_review',

 'room_type_Entire home/apt', 'room_type_Private room',

'room_type_Shared room',

 'neighbourhood_group_Bronx', 'neighbourhood_group_Brooklyn',

 'neighbourhood_group_Manhattan', 'neighbourhood_group_Queens',

 'neighbourhood_group_Staten Island'

]

2. Prepare X_cluster

X_cluster = data_encoded[cluster_features].copy()

X_cluster = X_cluster.fillna(0)

3. Scale

scaler = StandardScaler()

X_cluster = scaler.fit_transform(X_cluster)

4. Apply KMeans clustering

kmeans = KMeans(n_clusters=5, random_state=42, n_init=25)

cluster_labels = kmeans.fit_predict(X_cluster)

5. Apply PCA for 2D projection

pca = PCA(n_components=2, random_state=42)

X_pca = pca.fit_transform(X_cluster)

6. Create DataFrame for plotting

pca_df = pd.DataFrame(X_pca, columns=['PC1', 'PC2'])

pca_df['cluster'] = cluster_labels

7. Visualise clusters

plt.figure(figsize=(8, 6))

sns.scatterplot(data=pca_df, x='PC1', y='PC2', hue='cluster',

palette='tab10', alpha=0.6)

10

plt.title("Airbnb Listings Clusters (PCA Projection, k=5)")

plt.xlabel("Principal Component 1")

plt.ylabel("Principal Component 2")

plt.legend(title='Cluster')

plt.grid(True)

plt.tight_layout()

plt.savefig("airbnb_clusters_pca_2D_k5.png", dpi=300,

bbox_inches='tight')

plt.show()

Regression model

features = [

 'minimum_nights', 'reviews_per_month', 'latitude', 'longitude',

 'calculated_host_listings_count', 'availability_365',

'days_since_last_review',

 'room_type_Entire home/apt', 'room_type_Private room',

'room_type_Shared room',

 'neighbourhood_group_Bronx', 'neighbourhood_group_Brooklyn',

 'neighbourhood_group_Manhattan', 'neighbourhood_group_Queens',

 'neighbourhood_group_Staten Island'

]

Step 1: Prepare features and target

X = data_encoded[features].copy()

11

y = np.log1p(data_encoded['price'])

Step 2: Handle missing values

imputer = SimpleImputer(strategy='mean')

X_imputed = imputer.fit_transform(X)

Step 3: Scale

scaler = StandardScaler()

X_scaled = scaler.fit_transform(X_imputed)

Step 4: Train-test split

X_train, X_test, y_train, y_test = train_test_split(

 X_scaled, y, test_size=0.2, random_state=42

)

Step 5: LassoCV

lasso_cv = LassoCV(alphas=np.logspace(-4, 0, 50), cv=5,

random_state=42)

lasso_cv.fit(X_train, y_train)

Step 6: Define models

models = {

 "Linear": LinearRegression(),

 "Ridge": Ridge(),

 "Lasso (CV)": lasso_cv,

 "Random Forest": RandomForestRegressor(n_estimators=100,

random_state=42)

}

Step 7: Evaluate each model

for name, model in models.items():

 model.fit(X_train, y_train)

 y_pred_log = model.predict(X_test)

 y_pred = np.expm1(y_pred_log)

 y_test_actual = np.expm1(y_test)

 rmse = root_mean_squared_error(y_test_actual, y_pred)

 print(f"\n{name} Results:")

 print(f" MAE: ${mean_absolute_error(y_test_actual, y_pred):.2f}")

 print(f" RMSE: ${rmse:.2f}")

 print(f" R²: {r2_score(y_test_actual, y_pred):.3f}")

Linear Results:

 MAE: $48.18

 RMSE: $84.49

 R²: 0.336

Ridge Results:

12

 MAE: $48.20

 RMSE: $84.45

 R²: 0.337

Lasso (CV) Results:

 MAE: $48.20

 RMSE: $84.46

 R²: 0.337

Random Forest Results:

 MAE: $42.62

 RMSE: $74.04

 R²: 0.490

Random Forest

Feature list

features = [

 'minimum_nights', 'reviews_per_month', 'latitude', 'longitude',

 'calculated_host_listings_count', 'availability_365',

'days_since_last_review',

 'room_type_Entire home/apt', 'room_type_Private room',

'room_type_Shared room',

 'neighbourhood_group_Bronx', 'neighbourhood_group_Brooklyn',

 'neighbourhood_group_Manhattan', 'neighbourhood_group_Queens',

 'neighbourhood_group_Staten Island'

]

Step 1: Prepare features and target

X = data_encoded[features].copy()

y = np.log1p(data_encoded['price']) # log-transform target

Step 2: Impute missing values

imputer = SimpleImputer(strategy='mean')

X_imputed = imputer.fit_transform(X)

Step 3: Scale features

scaler = StandardScaler()

X_scaled = scaler.fit_transform(X_imputed)

Step 4: Train-test split

X_train, X_test, y_train, y_test = train_test_split(

 X_scaled, y, test_size=0.2, random_state=42

)

Step 5: Train Random Forest

rf_model = RandomForestRegressor(n_estimators=100, random_state=42)

rf_model.fit(X_train, y_train)

Step 6: Predict and evaluate

y_pred_log = rf_model.predict(X_test)

13

y_pred = np.expm1(y_pred_log)

y_test_actual = np.expm1(y_test)

print("\nRandom Forest Results:")

print(f" MAE: ${mean_absolute_error(y_test_actual, y_pred):.2f}")

print(f" RMSE: ${root_mean_squared_error(y_test_actual, y_pred):.2f}")

print(f" R²: {r2_score(y_test_actual, y_pred):.3f}")

Step 7: Plot feature importances

importances = rf_model.feature_importances_

sorted_idx = np.argsort(importances)[::-1]

sorted_features = np.array(features)[sorted_idx]

plt.figure(figsize=(10, 6))

plt.barh(sorted_features, importances[sorted_idx])

plt.gca().invert_yaxis()

plt.title("Random Forest Feature Importances")

plt.xlabel("Importance")

plt.grid(True)

plt.tight_layout()

plt.show()

Random Forest Results:

 MAE: $42.62

 RMSE: $74.04

 R²: 0.490

SHAP

import shap

Step 8: SHAP summary (fast with sample)

14

X_train_df = pd.DataFrame(X_train, columns=features)

X_sample = X_train_df.sample(1000, random_state=42) # ✅ sample only

Create SHAP explainer

explainer = shap.TreeExplainer(rf_model)

Compute SHAP values

shap_values = explainer.shap_values(X_sample)

SHAP summary plot (beeswarm)

shap.summary_plot(shap_values, X_sample) # ✅ no indentation error

here

Price prediction model

from tensorflow.keras.layers import Dropout

Features and target

data['log_reviews'] = np.log1p(data['reviews_per_month'])

data['log_min_nights'] = np.log1p(data['minimum_nights'])

15

features = ['minimum_nights','reviews_per_month','latitude',

'longitude',

 'calculated_host_listings_count', 'availability_365',

'days_since_last_review',

 'room_type_Entire home/apt', 'room_type_Private room',

'room_type_Shared room', 'neighbourhood_group_Bronx',

 'neighbourhood_group_Brooklyn',

'neighbourhood_group_Manhattan', 'neighbourhood_group_Queens',

 'neighbourhood_group_Staten Island']

numeric_features = ['minimum_nights','reviews_per_month','latitude',

'longitude',

 'calculated_host_listings_count', 'availability_365',

'days_since_last_review']

categorical_features = ['room_type_Entire home/apt',

'room_type_Private room', 'room_type_Shared room',

'neighbourhood_group_Bronx',

 'neighbourhood_group_Brooklyn',

'neighbourhood_group_Manhattan', 'neighbourhood_group_Queens',

 'neighbourhood_group_Staten Island']

target = 'price'

preprocessor = ColumnTransformer(transformers=[

 ('num', StandardScaler(), numeric_features),

 ('cat', OneHotEncoder(drop='first'), categorical_features)

])

X = data_encoded[features]

y = np.log1p(data['price'])

X_processed = preprocessor.fit_transform(X)

X_train, X_test, y_train, y_test = train_test_split(X_processed, y,

test_size=0.2, random_state=42)

model = Sequential([

 Input(shape=(X_train.shape[1],)),

 Dense(128, activation='relu'),

 Dropout(0.3),

 Dense(64, activation='relu'),

 Dropout(0.3),

 Dense(1)

])

model.compile(optimizer='adam', loss='mse', metrics=['mae'])

history = model.fit(X_train, y_train, validation_split=0.2, epochs=50,

batch_size=32, verbose=1)

16

from tensorflow.keras.layers import Dropout

from tensorflow.keras.callbacks import EarlyStopping

data_encoded['log_reviews'] =

np.log1p(data_encoded['reviews_per_month'])

data_encoded['log_min_nights'] =

np.log1p(data_encoded['minimum_nights'])

Feature list

features = [

 'minimum_nights', 'reviews_per_month', 'latitude', 'longitude',

 'calculated_host_listings_count', 'availability_365',

'days_since_last_review',

 'log_reviews', 'log_min_nights',

 'room_type_Entire home/apt', 'room_type_Private room',

'room_type_Shared room',

 'neighbourhood_group_Bronx', 'neighbourhood_group_Brooklyn',

 'neighbourhood_group_Manhattan', 'neighbourhood_group_Queens',

 'neighbourhood_group_Staten Island'

]

Feature groups

numeric_features = [

 'minimum_nights', 'reviews_per_month', 'latitude', 'longitude',

 'log_reviews', 'log_min_nights',

 'calculated_host_listings_count', 'availability_365',

'days_since_last_review'

]

categorical_features = [

 'room_type_Entire home/apt', 'room_type_Private room',

'room_type_Shared room',

 'neighbourhood_group_Bronx', 'neighbourhood_group_Brooklyn',

 'neighbourhood_group_Manhattan', 'neighbourhood_group_Queens',

 'neighbourhood_group_Staten Island'

]

Preprocessing

preprocessor = ColumnTransformer(transformers=[

 ('num', StandardScaler(), numeric_features),

 ('cat', 'passthrough', categorical_features) # Already one-hot

encoded

])

Define X and y

X = data_encoded[features]

y = np.log1p(data_encoded['price']) # Log-transformed target

Apply preprocessing

17

X_processed = preprocessor.fit_transform(X)

Split data

X_train, X_test, y_train, y_test = train_test_split(

 X_processed, y, test_size=0.2, random_state=42

)

Build model

model = Sequential([

 Input(shape=(X_train.shape[1],)),

 Dense(128, activation='relu'),

 Dropout(0.3),

 Dense(64, activation='relu'),

 Dropout(0.3),

 Dense(1)

])

model.compile(optimizer='adam', loss='mse', metrics=['mae'])

Add early stopping

early_stop = EarlyStopping(

 monitor='val_loss',

 patience=5,

 restore_best_weights=True

)

Train model

history = model.fit(

 X_train, y_train,

 validation_split=0.2,

 epochs=50,

 batch_size=32,

 callbacks=[early_stop],

 verbose=1

)

Evaluate performance in original scale

y_pred_log = model.predict(X_test).flatten()

y_pred = np.expm1(y_pred_log)

y_test_actual = np.expm1(y_test)

print("\nEvaluation on actual price scale:")

print(f" MAE: ${mean_absolute_error(y_test_actual, y_pred):.2f}")

print(f" RMSE: ${root_mean_squared_error(y_test_actual, y_pred):.2f}")

print(f" R²: {r2_score(y_test_actual, y_pred):.3f}")

import matplotlib.pyplot as plt

18

plt.plot(history.history['mae'], label='Train MAE')

plt.plot(history.history['val_mae'], label='Val MAE')

plt.xlabel('Epoch')

plt.ylabel('Mean Absolute Error')

plt.title('Model Performance with log(price)')

plt.legend()

plt.grid(True)

Save the figure BEFORE calling plt.show()

plt.savefig("model_performance_log_price.png", bbox_inches='tight',

dpi=300)

plt.show()

min_night_range = np.arange(1, 31)

sim_data = pd.DataFrame([{

 'occupancy_ratio': 0.3,

 'price': 100,

 'minimum_nights': mn,

 'availability_365': 365

} for mn in min_night_range])

sim_scaled = scaler.transform(sim_data)

Predict demand

predicted_demand = model.predict(sim_scaled).flatten()

19

pred = model.predict(sim_scaled).flatten()

pd.DataFrame({

 'minimum_nights': min_night_range,

 'predicted_reviews_per_month': pred

})

price_range = np.linspace(30, 300, 100)

base_listing = {

 'occupancy_ratio': 0.3,

 'minimum_nights': 2,

 'availability_365': 365,

 'room_type': 'Private room',

 'neighbourhood_group': 'Brooklyn'

}

Repeat base listing and vary price

sim_data = pd.DataFrame([

 {**base_listing, 'price': p} for p in price_range

])

X_sim = preprocessor.transform(sim_data)

pred_demand = model.predict(X_sim).flatten()

sim_data['predicted_reviews_per_month'] = pred_demand

sim_data['estimated_revenue'] = sim_data['price'] * pred_demand

best = sim_data.loc[sim_data['estimated_revenue'].idxmax()]

print(f"✅ Best price: ${best['price']:.2f}")

print(f"📈 Expected reviews/month:

{best['predicted_reviews_per_month']:.2f}")

print(f"💰 Estimated revenue: ${best['estimated_revenue']:.2f}")

Best price: $300.00

📈 Expected reviews/month: 65.24

💰 Estimated revenue: $19572.62

for (ng, rt), group in sim_data.groupby(['neighbourhood_group',

'room_type']):

 plt.plot(group['price'], group['estimated_revenue'], label=f"{ng} -

{rt}")

plt.xlabel("Price")

plt.ylabel("Estimated Revenue")

plt.title("Revenue Curve per Room Type and Neighbourhood")

plt.legend()

plt.grid(True)

plt.show()

20

mport shap

explainer = shap.Explainer(model, X_train)

shap_values = explainer(X_test[:100])

shap.plots.beeswarm(shap_values)

feature_names = preprocessor.get_feature_names_out()

print(feature_names)

data_price = data[data['price'] > 0]

Draw boxplot

plt.figure(figsize=(10, 6))

sns.boxplot(x=data_price['price'])

plt.title('Boxplot of Airbnb Prices in NYC')

plt.xlabel('Price ($)')

plt.xlim(0, 5000) # adjust to ignore extreme outliers in view

plt.grid(True)

plt.show()

21

upper_limit = data['price'].quantile(0.99) # top 1% cutoff

print(f"99th percentile cutoff: ${upper_limit:.2f}")

data_price = data[data['price'] <= upper_limit]

Q1 = data['price'].quantile(0.25)

Q3 = data['price'].quantile(0.75)

IQR = Q3 - Q1

lower_bound = Q1 - 1.5 * IQR

upper_bound = Q3 + 1.5 * IQR

print(f"Lower bound: {lower_bound:.2f}, Upper bound:

{upper_bound:.2f}")

Handle missing last_review

data['last_review'] = data['last_review'].fillna('2019-01-01') # Fill

missing

data['last_review'] = pd.to_datetime(data['last_review']) #

Convert to datetime

reference_date = pd.to_datetime('2019-06-30') # Fixed

reference

data['days_since_last_review'] = (reference_date -

data['last_review']).dt.days # Calculate

missing_count = data['room_type'].isna().sum()

print(f"Missing values in 'room_type': {missing_count}")

Log Price comparison

import seaborn as sns

22

import matplotlib.pyplot as plt

import numpy as np

plt.figure(figsize=(12, 4))

plt.subplot(1, 2, 1)

sns.histplot(data['price'], bins=100)

plt.title("Original Price Distribution")

plt.subplot(1, 2, 2)

sns.histplot(np.log1p(data['price']), bins=100)

plt.title("Log-Transformed Price Distribution")

plt.tight_layout()

plt.show()

	Data Cleaning
	Clustering
	Regression model
	Random Forest
	SHAP
	Price prediction model
	Log Price comparison

