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Airbnb Business Analysis Using a Data Science Approach 

Introduction. 

The aim of this report is to present to the executive team of Airbnb a comprehensive 

analysis of a dataset which contains valuable information about the listing activity in 

New York during the year 2019. The scope is to provide with accurate predictions 

about the Airbnb trends in order the executive team to improve profitability and 

maximize their business actions in that particular area. 

Airbnb is a company founded in 2007 and offer short and long-term homestays. The 

company main focus is to offer unique experiences and stays which allows its guests 

to have a better and unique connection with the local communities (Airbnb, Inc., 

2025). 

The dataset used for the analysis is “AB_NYC_2019” a dataset downloaded from the 

platform Kaggle which is “a data platform that includes sections titled Competitions, 

Datasets, Code, Discussions, Learn, and, most recently, Models.” (Preda, 2023). 

The dataset contains 48,895 rows of data and sixteen columns. 

 

For the analysis of the dataset and for the visualisation, Google Colab has been 

used. In Appendix A the phyton code for the Machine Learning Project can be found. 

Business Context and Business Questions. 

Based on the first check of the above-mentioned dataset, two primary business 

questions have been selected to be developed and analysed through a classic 

Machine Learning (ML in this report) methodology. 

The questions are the following: 

Question 1: What factors have the strongest influence on Airbnb listing prices in New 

York City? 

Question 2: How do neighbourhood characteristics and listing attributes interact to 

influence Airbnb pricing patterns across different New York City boroughs, and what 

pricing strategies can hosts implement to optimize revenue based on these spatial 

dynamics? 

Question 1. Visualisation and Insights. 

To answer the first question, Regression Analysis has been used. Various models 

have been tested in order to find the best performer: Linear Regression, Random 

Forest, Ridge, Lasso cross-validation and, based on the overall results, the best 

performer has been the Random Forest. 

Random Forest results in a R squared of 0.490 (49%) which, from a business 

perspective is a good results and offer the executive Airbnb team useful insights for 

business decisions. In Appendix A the complete coding of the Random Forest 

analysis can be consulted. 
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Fig. 1 – Random Forest Feature Importances (Appendix A). 

The results visible in Figure 1 highlight the significant importance of the type of room 

(entire home or apartment) as a main factor influencing the prices in New York 

Airbnb’s listing. Is evident that the entire home or apartment is the biggest value 

proposition and the host is willing to pay a premium price for. 

Location is another crucial factor influencing the price a host is willing to pay. A 

strategic geographical position within the city is an important factor influencing the 

rental price. 

Last factor influencing the Airbnb listing price is the availability patterns which 

highlight that a wise seasonal availability affects sensibly the price. 

Is important to mention that reviews metrics, which could be consider as an important 

influencer, is not affecting the prices as the three above-mentioned factors. 

 

Those results could be very important for the Airbnb executive team to plan a 

focused targeting of entire homes and apartments in strategic locations of the city 

with a wide availability to increase revenues. 

Question 2. Visualisation and Insights. 

For analysing the neighbourhood characteristics and listing attributes in order to see 

the interaction with the pricing pattern of Airbnb the first action has been identify 

clusters in the city of New York. To obtain a clear map of clusters it has been used a 

K-means clustering using mainly three scores: Elbow Method, Silhouette Score and 

Calinski-Harabasz Score (Appendix A). 

Five main clusters have been defined and, in figure 2, a Principal Component 
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Analysis (PCA) has been used to provide a visual representation of the 5 main 

clusters discovered. 

 

Fig. 2 – Principal Component Analysis of the five K. K-means clustering (Appendix A). 

Among these five main clusters we have the number 1 (indicated as cluster zero in 

Figure 2) which represents the high-price, low-availability. This cluster represents a 

prime cluster for high-end customers willing to pay prime price for premium location 

(Upper Manhattan) and all the benefits that these locations generate. 

For the executive team of Airbnb the cluster number 2 (indicated as cluster one in 

Figure 2) should be the one to invest time and effort in. It represents the mid-tier 

pricing option with decent availability in an attractive and alive location (Central 

Brooklyn). This area represents a remarkably interesting potential area for expansion 

and market growth and the executive team could think about slightly increasing the 

prices for this cluster and use it as a potentially strategic new area of focus. 

Both of these clusters could represent a potential growth, but based on the findings 

of the analysis, Brooklyn cluster (number 1 in figure 2) could be the short-term period 

strategy to increase profitability and market share. 
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Conclusions and recommendations. 

This analysis identifies three major factors that drive higher Airbnb prices in New York 

City: listings located in premium areas such as Manhattan, properties listed as entire 

homes or apartments, and consistent availability throughout the year. 

The clustering analysis also highlights Brooklyn as a key area of opportunity. While it 

may not be realistic to expect hosts to acquire new properties there, Airbnb can still 

support growth in Brooklyn by enhancing platform visibility, targeted marketing, and 

host-focused tools. This borough offers a strong balance of affordability and guest 

demand, making it well-positioned for strategic investment at the platform level. 

Looking ahead, improving pricing models by incorporating more detailed, location-

based context like proximity to subway stations, tourist attractions, or cultural events 

could provide a more accurate reflection of listing value. As Bronnenberg, Dubé, and 

Gentzkow (2012) explain, “geographic frictions play a significant role in shaping 

consumer behaviour.” In other words, even minor differences in location can 

influence booking decisions. By recognising and modelling these subtle spatial 

dynamics, Airbnb can better align pricing recommendations with what guests are 

actually willing to pay. 
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Appendix A. 

Machine Learning code (Phyton) used by the team to analyse the given dataset 

“AB_NYC_2019”. 

# @title 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import StandardScaler 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense, Input 

from sklearn.compose import ColumnTransformer 

from sklearn.preprocessing import StandardScaler, OneHotEncoder 

import matplotlib.pyplot as plt 

import seaborn as sns 

from sklearn.decomposition import PCA 

from sklearn.impute import SimpleImputer 

from sklearn.linear_model import LinearRegression, Ridge, LassoCV, 

ElasticNetCV 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.metrics import mean_absolute_error, r2_score, 

root_mean_squared_error, silhouette_score, calinski_harabasz_score 

from sklearn.cluster import KMeans 

 

data = pd.read_csv('AB_NYC_2019.csv') 

data['room_type'].unique() 

array(['Private room', 'Entire home/apt', 'Shared room'], dtype=object) 

Data Cleaning 

# Copy data to avoid chained assignment warnings 

data_encoded = data 

data_encoded = data_encoded.copy() 

# Step 1: Fill missing values explicitly as strings 

data_encoded['last_review'] = data_encoded['last_review'].fillna('2019-

01-01') 

 

# Step 2: Convert to datetime safely 

data_encoded['last_review'] = 

pd.to_datetime(data_encoded['last_review'], errors='coerce') 

 

# Step 3: Calculate days since last review 
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reference_date = pd.to_datetime('2019-06-30') 

data_encoded['days_since_last_review'] = (reference_date - 

data_encoded['last_review']).dt.days 

 

# Remove top 5% price outliers 

upper_limit = data_encoded['price'].quantile(0.99) 

print(f"99th percentile cutoff: ${upper_limit:.2f}") 

data_encoded = data_encoded[data_encoded['price'] <= 

upper_limit].copy() 

 

# One-hot encode room_type and neighbourhood_group 

data_encoded = pd.get_dummies( 

    data_encoded, columns=['room_type', 'neighbourhood_group'], 

drop_first=False 

) 

 

# Preview result 

data_encoded 

 

99th percentile cutoff: $799.00 

print("Available columns:", data_encoded.columns.tolist()) 

Available columns: ['id', 'name', 'host_id', 'host_name', 

'neighbourhood', 'latitude', 'longitude', 'price', 'minimum_nights', 

'number_of_reviews', 'last_review', 'reviews_per_month', 

'calculated_host_listings_count', 'availability_365', 

'days_since_last_review', 'room_type_Entire home/apt', 

'room_type_Private room', 'room_type_Shared room', 

'neighbourhood_group_Bronx', 'neighbourhood_group_Brooklyn', 

'neighbourhood_group_Manhattan', 'neighbourhood_group_Queens', 

'neighbourhood_group_Staten Island'] 

print("Available columns:", data.columns.tolist()) 

Available columns: ['id', 'name', 'host_id', 'host_name', 

'neighbourhood_group', 'neighbourhood', 'latitude', 'longitude', 

'room_type', 'price', 'minimum_nights', 'number_of_reviews', 

'last_review', 'reviews_per_month', 'calculated_host_listings_count', 

'availability_365'] 

X = input feature = reviews_per_month / availability_365 y = what we want to predict = 

reviews_per_month 

Clustering 

# Step 1: Define features 

cluster_features = [ 

    'minimum_nights','reviews_per_month','latitude', 'longitude', 

    'calculated_host_listings_count', 'availability_365', 

'days_since_last_review', 
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    'room_type_Entire home/apt', 'room_type_Private room', 

'room_type_Shared room', 

    'neighbourhood_group_Bronx', 'neighbourhood_group_Brooklyn', 

    'neighbourhood_group_Manhattan', 'neighbourhood_group_Queens', 

    'neighbourhood_group_Staten Island' 

] 

 

# Step 2: Prepare data 

X = data_encoded[cluster_features].copy() 

X = X.fillna(0)  # Handle missing values 

 

# Step 3: Scale features 

scaler = StandardScaler() 

X_scaled = scaler.fit_transform(X) 

 

# Step 4: Reduce to 2D using PCA 

pca = PCA(n_components=2, random_state=42) 

X_pca = pca.fit_transform(X_scaled) 

 

# Step 5: Try clustering with various k 

ks = range(2, 11) 

inertias, sil_scores, ch_scores = [], [], [] 

 

for k in ks: 

    kmeans = KMeans(n_clusters=k, random_state=42, n_init=25) 

    labels = kmeans.fit_predict(X_pca) 

    inertias.append(kmeans.inertia_) 

    sil_scores.append(silhouette_score(X_pca, labels)) 

    ch_scores.append(calinski_harabasz_score(X_pca, labels)) 

 

# Step 6: Plot evaluation metrics 

plt.figure(figsize=(15, 4)) 

 

plt.subplot(1, 3, 1) 

plt.plot(ks, inertias, marker='o') 

plt.title("Elbow Method") 

plt.xlabel("Number of Clusters") 

plt.ylabel("Inertia") 

 

plt.subplot(1, 3, 2) 

plt.plot(ks, sil_scores, marker='o', color='green') 

plt.title("Silhouette Score") 

plt.xlabel("Number of Clusters") 

plt.ylabel("Silhouette Score") 

 

plt.subplot(1, 3, 3) 

plt.plot(ks, ch_scores, marker='o', color='red') 

plt.title("Calinski-Harabasz Score") 

plt.xlabel("Number of Clusters") 
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plt.ylabel("CH Score") 

 

plt.tight_layout() 

plt.show() 

 

# 1. Select features for clustering 

cluster_features = [ 

    'minimum_nights','reviews_per_month','latitude', 'longitude', 

    'calculated_host_listings_count', 'availability_365', 

'days_since_last_review', 

    'room_type_Entire home/apt', 'room_type_Private room', 

'room_type_Shared room', 

    'neighbourhood_group_Bronx', 'neighbourhood_group_Brooklyn', 

    'neighbourhood_group_Manhattan', 'neighbourhood_group_Queens', 

    'neighbourhood_group_Staten Island' 

] 

 

# 2. Prepare X_cluster 

X_cluster = data_encoded[cluster_features].copy() 

X_cluster = X_cluster.fillna(0) 

 

# 3. Scale 

scaler = StandardScaler() 

X_cluster = scaler.fit_transform(X_cluster) 

 

# 4. Apply KMeans clustering 

kmeans = KMeans(n_clusters=5, random_state=42, n_init=25) 

cluster_labels = kmeans.fit_predict(X_cluster) 

 

# 5. Apply PCA for 2D projection 

pca = PCA(n_components=2, random_state=42) 

X_pca = pca.fit_transform(X_cluster) 

 

# 6. Create DataFrame for plotting 

pca_df = pd.DataFrame(X_pca, columns=['PC1', 'PC2']) 

pca_df['cluster'] = cluster_labels 

 

# 7. Visualise clusters 

plt.figure(figsize=(8, 6)) 

sns.scatterplot(data=pca_df, x='PC1', y='PC2', hue='cluster', 

palette='tab10', alpha=0.6) 
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plt.title("Airbnb Listings Clusters (PCA Projection, k=5)") 

plt.xlabel("Principal Component 1") 

plt.ylabel("Principal Component 2") 

plt.legend(title='Cluster') 

plt.grid(True) 

plt.tight_layout() 

plt.savefig("airbnb_clusters_pca_2D_k5.png", dpi=300, 

bbox_inches='tight') 

plt.show() 

 

Regression model 

features = [ 

    'minimum_nights', 'reviews_per_month', 'latitude', 'longitude', 

    'calculated_host_listings_count', 'availability_365', 

'days_since_last_review', 

    'room_type_Entire home/apt', 'room_type_Private room', 

'room_type_Shared room', 

    'neighbourhood_group_Bronx', 'neighbourhood_group_Brooklyn', 

    'neighbourhood_group_Manhattan', 'neighbourhood_group_Queens', 

    'neighbourhood_group_Staten Island' 

] 

 

# Step 1: Prepare features and target 

X = data_encoded[features].copy() 
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y = np.log1p(data_encoded['price']) 

 

# Step 2: Handle missing values 

imputer = SimpleImputer(strategy='mean') 

X_imputed = imputer.fit_transform(X) 

 

# Step 3: Scale 

scaler = StandardScaler() 

X_scaled = scaler.fit_transform(X_imputed) 

 

# Step 4: Train-test split 

X_train, X_test, y_train, y_test = train_test_split( 

    X_scaled, y, test_size=0.2, random_state=42 

) 

 

# Step 5: LassoCV 

lasso_cv = LassoCV(alphas=np.logspace(-4, 0, 50), cv=5, 

random_state=42) 

lasso_cv.fit(X_train, y_train) 

 

# Step 6: Define models 

models = { 

    "Linear": LinearRegression(), 

    "Ridge": Ridge(), 

    "Lasso (CV)": lasso_cv, 

    "Random Forest": RandomForestRegressor(n_estimators=100, 

random_state=42) 

} 

 

# Step 7: Evaluate each model 

for name, model in models.items(): 

    model.fit(X_train, y_train) 

    y_pred_log = model.predict(X_test) 

    y_pred = np.expm1(y_pred_log) 

    y_test_actual = np.expm1(y_test) 

 

    rmse = root_mean_squared_error(y_test_actual, y_pred) 

 

    print(f"\n{name} Results:") 

    print(f"  MAE:  ${mean_absolute_error(y_test_actual, y_pred):.2f}") 

    print(f"  RMSE: ${rmse:.2f}") 

    print(f"  R²:   {r2_score(y_test_actual, y_pred):.3f}") 

 

Linear Results: 

  MAE:  $48.18 

  RMSE: $84.49 

  R²:   0.336 

 

Ridge Results: 
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  MAE:  $48.20 

  RMSE: $84.45 

  R²:   0.337 

 

Lasso (CV) Results: 

  MAE:  $48.20 

  RMSE: $84.46 

  R²:   0.337 

 

Random Forest Results: 

  MAE:  $42.62 

  RMSE: $74.04 

  R²:   0.490 

Random Forest 

# Feature list 

features = [ 

    'minimum_nights', 'reviews_per_month', 'latitude', 'longitude', 

    'calculated_host_listings_count', 'availability_365', 

'days_since_last_review', 

    'room_type_Entire home/apt', 'room_type_Private room', 

'room_type_Shared room', 

    'neighbourhood_group_Bronx', 'neighbourhood_group_Brooklyn', 

    'neighbourhood_group_Manhattan', 'neighbourhood_group_Queens', 

    'neighbourhood_group_Staten Island' 

] 

 

# Step 1: Prepare features and target 

X = data_encoded[features].copy() 

y = np.log1p(data_encoded['price'])  # log-transform target 

 

# Step 2: Impute missing values 

imputer = SimpleImputer(strategy='mean') 

X_imputed = imputer.fit_transform(X) 

 

# Step 3: Scale features 

scaler = StandardScaler() 

X_scaled = scaler.fit_transform(X_imputed) 

 

# Step 4: Train-test split 

X_train, X_test, y_train, y_test = train_test_split( 

    X_scaled, y, test_size=0.2, random_state=42 

) 

 

# Step 5: Train Random Forest 

rf_model = RandomForestRegressor(n_estimators=100, random_state=42) 

rf_model.fit(X_train, y_train) 

 

# Step 6: Predict and evaluate 

y_pred_log = rf_model.predict(X_test) 
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y_pred = np.expm1(y_pred_log) 

y_test_actual = np.expm1(y_test) 

print("\nRandom Forest Results:") 

print(f"  MAE:  ${mean_absolute_error(y_test_actual, y_pred):.2f}") 

print(f"  RMSE: ${root_mean_squared_error(y_test_actual, y_pred):.2f}") 

print(f"  R²:   {r2_score(y_test_actual, y_pred):.3f}") 

 

# Step 7: Plot feature importances 

importances = rf_model.feature_importances_ 

sorted_idx = np.argsort(importances)[::-1] 

sorted_features = np.array(features)[sorted_idx] 

 

plt.figure(figsize=(10, 6)) 

plt.barh(sorted_features, importances[sorted_idx]) 

plt.gca().invert_yaxis() 

plt.title("Random Forest Feature Importances") 

plt.xlabel("Importance") 

plt.grid(True) 

plt.tight_layout() 

plt.show() 

Random Forest Results: 

  MAE:  $42.62 

  RMSE: $74.04 

  R²:   0.490 

 

SHAP 

import shap 

 

# Step 8: SHAP summary (fast with sample) 



14 
 

X_train_df = pd.DataFrame(X_train, columns=features) 

X_sample = X_train_df.sample(1000, random_state=42)  # ✅ sample only 

 

# Create SHAP explainer 

explainer = shap.TreeExplainer(rf_model) 

 

# Compute SHAP values 

shap_values = explainer.shap_values(X_sample) 

 

# SHAP summary plot (beeswarm) 

shap.summary_plot(shap_values, X_sample)  # ✅ no indentation error 

here 

 

Price prediction model 

from tensorflow.keras.layers import Dropout 

# Features and target 

data['log_reviews'] = np.log1p(data['reviews_per_month']) 

data['log_min_nights'] = np.log1p(data['minimum_nights']) 
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features = [  'minimum_nights','reviews_per_month','latitude', 

'longitude', 

    'calculated_host_listings_count', 'availability_365', 

'days_since_last_review', 

    'room_type_Entire home/apt', 'room_type_Private room', 

'room_type_Shared room', 'neighbourhood_group_Bronx', 

                    'neighbourhood_group_Brooklyn', 

'neighbourhood_group_Manhattan', 'neighbourhood_group_Queens',  

                    'neighbourhood_group_Staten Island'] 

numeric_features = ['minimum_nights','reviews_per_month','latitude', 

'longitude', 

    'calculated_host_listings_count', 'availability_365', 

'days_since_last_review'] 

categorical_features = [ 'room_type_Entire home/apt', 

'room_type_Private room', 'room_type_Shared room', 

'neighbourhood_group_Bronx', 

                    'neighbourhood_group_Brooklyn', 

'neighbourhood_group_Manhattan', 'neighbourhood_group_Queens',  

                    'neighbourhood_group_Staten Island'] 

target = 'price' 

 

preprocessor = ColumnTransformer(transformers=[ 

    ('num', StandardScaler(), numeric_features), 

    ('cat', OneHotEncoder(drop='first'), categorical_features) 

]) 

 

X = data_encoded[features] 

y = np.log1p(data['price'])  

 

X_processed = preprocessor.fit_transform(X) 

 

X_train, X_test, y_train, y_test = train_test_split(X_processed, y, 

test_size=0.2, random_state=42) 

 

model = Sequential([ 

    Input(shape=(X_train.shape[1],)), 

    Dense(128, activation='relu'), 

    Dropout(0.3), 

    Dense(64, activation='relu'), 

    Dropout(0.3), 

    Dense(1) 

]) 

 

model.compile(optimizer='adam', loss='mse', metrics=['mae']) 

history = model.fit(X_train, y_train, validation_split=0.2, epochs=50, 

batch_size=32, verbose=1) 
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from tensorflow.keras.layers import Dropout 

from tensorflow.keras.callbacks import EarlyStopping 

 

data_encoded['log_reviews'] = 

np.log1p(data_encoded['reviews_per_month']) 

data_encoded['log_min_nights'] = 

np.log1p(data_encoded['minimum_nights']) 

 

# Feature list 

features = [   

    'minimum_nights', 'reviews_per_month', 'latitude', 'longitude', 

    'calculated_host_listings_count', 'availability_365', 

'days_since_last_review', 

    'log_reviews', 'log_min_nights', 

    'room_type_Entire home/apt', 'room_type_Private room', 

'room_type_Shared room', 

    'neighbourhood_group_Bronx', 'neighbourhood_group_Brooklyn', 

    'neighbourhood_group_Manhattan', 'neighbourhood_group_Queens', 

    'neighbourhood_group_Staten Island' 

] 

 

# Feature groups 

numeric_features = [ 

    'minimum_nights', 'reviews_per_month', 'latitude', 'longitude', 

    'log_reviews', 'log_min_nights', 

    'calculated_host_listings_count', 'availability_365', 

'days_since_last_review' 

] 

 

categorical_features = [ 

    'room_type_Entire home/apt', 'room_type_Private room', 

'room_type_Shared room', 

    'neighbourhood_group_Bronx', 'neighbourhood_group_Brooklyn', 

    'neighbourhood_group_Manhattan', 'neighbourhood_group_Queens', 

    'neighbourhood_group_Staten Island' 

] 

 

# Preprocessing 

preprocessor = ColumnTransformer(transformers=[ 

    ('num', StandardScaler(), numeric_features), 

    ('cat', 'passthrough', categorical_features)  # Already one-hot 

encoded 

]) 

 

# Define X and y 

X = data_encoded[features] 

y = np.log1p(data_encoded['price'])  # Log-transformed target 

 

# Apply preprocessing 
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X_processed = preprocessor.fit_transform(X) 

 

# Split data 

X_train, X_test, y_train, y_test = train_test_split( 

    X_processed, y, test_size=0.2, random_state=42 

) 

 

# Build model 

model = Sequential([ 

    Input(shape=(X_train.shape[1],)), 

    Dense(128, activation='relu'), 

    Dropout(0.3), 

    Dense(64, activation='relu'), 

    Dropout(0.3), 

    Dense(1) 

]) 

 

model.compile(optimizer='adam', loss='mse', metrics=['mae']) 

 

# Add early stopping 

early_stop = EarlyStopping( 

    monitor='val_loss', 

    patience=5, 

    restore_best_weights=True 

) 

 

# Train model 

history = model.fit( 

    X_train, y_train, 

    validation_split=0.2, 

    epochs=50, 

    batch_size=32, 

    callbacks=[early_stop], 

    verbose=1 

) 

 

# Evaluate performance in original scale 

y_pred_log = model.predict(X_test).flatten() 

y_pred = np.expm1(y_pred_log) 

y_test_actual = np.expm1(y_test) 

 

print("\nEvaluation on actual price scale:") 

print(f"  MAE:  ${mean_absolute_error(y_test_actual, y_pred):.2f}") 

print(f"  RMSE: ${root_mean_squared_error(y_test_actual, y_pred):.2f}") 

print(f"  R²:   {r2_score(y_test_actual, y_pred):.3f}") 

 

import matplotlib.pyplot as plt 
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plt.plot(history.history['mae'], label='Train MAE') 

plt.plot(history.history['val_mae'], label='Val MAE') 

plt.xlabel('Epoch') 

plt.ylabel('Mean Absolute Error') 

plt.title('Model Performance with log(price)') 

plt.legend() 

plt.grid(True) 

 

# Save the figure BEFORE calling plt.show() 

plt.savefig("model_performance_log_price.png", bbox_inches='tight', 

dpi=300) 

 

plt.show() 

 

min_night_range = np.arange(1, 31) 

sim_data = pd.DataFrame([{ 

    'occupancy_ratio': 0.3, 

    'price': 100, 

    'minimum_nights': mn, 

    'availability_365': 365 

} for mn in min_night_range]) 

 

sim_scaled = scaler.transform(sim_data) 

 

# Predict demand 

predicted_demand = model.predict(sim_scaled).flatten() 
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pred = model.predict(sim_scaled).flatten() 

 

pd.DataFrame({ 

    'minimum_nights': min_night_range, 

    'predicted_reviews_per_month': pred 

}) 

price_range = np.linspace(30, 300, 100) 

 

base_listing = { 

    'occupancy_ratio': 0.3, 

    'minimum_nights': 2, 

    'availability_365': 365, 

    'room_type': 'Private room', 

    'neighbourhood_group': 'Brooklyn' 

} 

 

# Repeat base listing and vary price 

sim_data = pd.DataFrame([ 

    {**base_listing, 'price': p} for p in price_range 

]) 

 

X_sim = preprocessor.transform(sim_data) 

 

pred_demand = model.predict(X_sim).flatten() 

sim_data['predicted_reviews_per_month'] = pred_demand 

sim_data['estimated_revenue'] = sim_data['price'] * pred_demand 

best = sim_data.loc[sim_data['estimated_revenue'].idxmax()] 

print(f"✅ Best price: ${best['price']:.2f}") 

print(f"📈 Expected reviews/month: 

{best['predicted_reviews_per_month']:.2f}") 

print(f"💰 Estimated revenue: ${best['estimated_revenue']:.2f}") 

 

Best price: $300.00 

📈 Expected reviews/month: 65.24 

💰 Estimated revenue: $19572.62 

for (ng, rt), group in sim_data.groupby(['neighbourhood_group', 

'room_type']): 

    plt.plot(group['price'], group['estimated_revenue'], label=f"{ng} - 

{rt}") 

plt.xlabel("Price") 

plt.ylabel("Estimated Revenue") 

plt.title("Revenue Curve per Room Type and Neighbourhood") 

plt.legend() 

plt.grid(True) 

plt.show() 



20 
 

 

mport shap 

 

explainer = shap.Explainer(model, X_train) 

shap_values = explainer(X_test[:100]) 

shap.plots.beeswarm(shap_values) 

feature_names = preprocessor.get_feature_names_out() 

print(feature_names) 

data_price = data[data['price'] > 0] 

 

# Draw boxplot 

plt.figure(figsize=(10, 6)) 

sns.boxplot(x=data_price['price']) 

plt.title('Boxplot of Airbnb Prices in NYC') 

plt.xlabel('Price ($)') 

plt.xlim(0, 5000)  # adjust to ignore extreme outliers in view 

plt.grid(True) 

plt.show() 
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upper_limit = data['price'].quantile(0.99)  # top 1% cutoff 

print(f"99th percentile cutoff: ${upper_limit:.2f}") 

 

data_price = data[data['price'] <= upper_limit] 

Q1 = data['price'].quantile(0.25) 

Q3 = data['price'].quantile(0.75) 

IQR = Q3 - Q1 

lower_bound = Q1 - 1.5 * IQR 

upper_bound = Q3 + 1.5 * IQR 

 

print(f"Lower bound: {lower_bound:.2f}, Upper bound: 

{upper_bound:.2f}") 

# Handle missing last_review 

data['last_review'] = data['last_review'].fillna('2019-01-01')  # Fill 

missing 

data['last_review'] = pd.to_datetime(data['last_review'])       # 

Convert to datetime 

reference_date = pd.to_datetime('2019-06-30')                   # Fixed 

reference 

data['days_since_last_review'] = (reference_date - 

data['last_review']).dt.days  # Calculate 

 

missing_count = data['room_type'].isna().sum() 

print(f"Missing values in 'room_type': {missing_count}") 

Log Price comparison 

import seaborn as sns 
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import matplotlib.pyplot as plt 

import numpy as np 

 

plt.figure(figsize=(12, 4)) 

 

plt.subplot(1, 2, 1) 

sns.histplot(data['price'], bins=100) 

plt.title("Original Price Distribution") 

 

plt.subplot(1, 2, 2) 

sns.histplot(np.log1p(data['price']), bins=100) 

plt.title("Log-Transformed Price Distribution") 

 

plt.tight_layout() 

plt.show() 
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