Airbnb Business Analysis Using a Data Science Approach
Introduction.

The aim of this report is to present to the executive team of Airbnb a comprehensive
analysis of a dataset which contains valuable information about the listing activity in
New York during the year 2019. The scope is to provide with accurate predictions
about the Airbnb trends in order the executive team to improve profitability and
maximize their business actions in that particular area.

Airbnb is a company founded in 2007 and offer short and long-term homestays. The
company main focus is to offer unique experiences and stays which allows its guests
to have a better and unique connection with the local communities (Airbnb, Inc.,
2025).

The dataset used for the analysis is “AB_NYC_2019” a dataset downloaded from the
platform Kaggle which is “a data platform that includes sections titled Competitions,
Datasets, Code, Discussions, Learn, and, most recently, Models.” (Preda, 2023).
The dataset contains 48,895 rows of data and sixteen columns.

For the analysis of the dataset and for the visualisation, Google Colab has been
used. In Appendix A the phyton code for the Machine Learning Project can be found.

Business Context and Business Questions.

Based on the first check of the above-mentioned dataset, two primary business
questions have been selected to be developed and analysed through a classic
Machine Learning (ML in this report) methodology.

The questions are the following:

Question 1: What factors have the strongest influence on Airbnb listing prices in New
York City?

Question 2: How do neighbourhood characteristics and listing attributes interact to
influence Airbnb pricing patterns across different New York City boroughs, and what
pricing strategies can hosts implement to optimize revenue based on these spatial
dynamics?

Question 1. Visualisation and Insights.

To answer the first question, Regression Analysis has been used. Various models
have been tested in order to find the best performer: Linear Regression, Random
Forest, Ridge, Lasso cross-validation and, based on the overall results, the best
performer has been the Random Forest.

Random Forest results in a R squared of 0.490 (49%) which, from a business
perspective is a good results and offer the executive Airbnb team useful insights for
business decisions. In Appendix A the complete coding of the Random Forest
analysis can be consulted.

Random Forest Feature Importances

latitude ==
availability_365 =
reviews_per_month =
days_since_last_review =

minimum_nights
neighbourhood_group_Manhattan
calculated_host_listings_count
room_type_Private room
room_type_Shared room
neighbourhood_group_Queens
neighbourhood_group Brooklyn
neighbourhood_group_Bronx

neighbourhood_group_Staten Island

T T T T T T T
5 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Importance

oA

f
0.00 0.

Fig. 1 — Random Forest Feature Importances (Appendix A).

The results visible in Figure 1 highlight the significant importance of the type of room
(entire home or apartment) as a main factor influencing the prices in New York
Airbnb’s listing. Is evident that the entire home or apartment is the biggest value
proposition and the host is willing to pay a premium price for.

Location is another crucial factor influencing the price a host is willing to pay. A
strategic geographical position within the city is an important factor influencing the
rental price.

Last factor influencing the Airbnb listing price is the availability patterns which
highlight that a wise seasonal availability affects sensibly the price.

Is important to mention that reviews metrics, which could be consider as an important
influencer, is not affecting the prices as the three above-mentioned factors.

Those results could be very important for the Airbnb executive team to plan a
focused targeting of entire homes and apartments in strategic locations of the city
with a wide availability to increase revenues.

Question 2. Visualisation and Insights.

For analysing the neighbourhood characteristics and listing attributes in order to see
the interaction with the pricing pattern of Airbnb the first action has been identify
clusters in the city of New York. To obtain a clear map of clusters it has been used a
K-means clustering using mainly three scores: Elbow Method, Silhouette Score and
Calinski-Harabasz Score (Appendix A).

Five main clusters have been defined and, in figure 2, a Principal Component

Analysis (PCA) has been used to provide a visual representation of the 5 main
clusters discovered.

Airbnb Listings Clusters (PCA Projection, k=5)

® Cluster
0

)
H W N =

Principal Component 2

o t,.,,

—4 . o P
o
® gre’

(X

2.

—6 ! ! -«

-4 -2 0 2 4 6 8

Principal Component 1

Fig. 2 — Principal Component Analysis of the five K. K-means clustering (Appendix A).

Among these five main clusters we have the number 1 (indicated as cluster zero in
Figure 2) which represents the high-price, low-availability. This cluster represents a
prime cluster for high-end customers willing to pay prime price for premium location
(Upper Manhattan) and all the benefits that these locations generate.

For the executive team of Airbnb the cluster number 2 (indicated as cluster one in
Figure 2) should be the one to invest time and effort in. It represents the mid-tier
pricing option with decent availability in an attractive and alive location (Central
Brooklyn). This area represents a remarkably interesting potential area for expansion
and market growth and the executive team could think about slightly increasing the
prices for this cluster and use it as a potentially strategic new area of focus.

Both of these clusters could represent a potential growth, but based on the findings
of the analysis, Brooklyn cluster (number 1 in figure 2) could be the short-term period
strategy to increase profitability and market share.

Conclusions and recommendations.

This analysis identifies three major factors that drive higher Airbnb prices in New York
City: listings located in premium areas such as Manhattan, properties listed as entire
homes or apartments, and consistent availability throughout the year.

The clustering analysis also highlights Brooklyn as a key area of opportunity. While it
may not be realistic to expect hosts to acquire new properties there, Airbnb can still
support growth in Brooklyn by enhancing platform visibility, targeted marketing, and
host-focused tools. This borough offers a strong balance of affordability and guest
demand, making it well-positioned for strategic investment at the platform level.

Looking ahead, improving pricing models by incorporating more detailed, location-
based context like proximity to subway stations, tourist attractions, or cultural events
could provide a more accurate reflection of listing value. As Bronnenberg, Dubé, and
Gentzkow (2012) explain, “geographic frictions play a significant role in shaping
consumer behaviour.” In other words, even minor differences in location can
influence booking decisions. By recognising and modelling these subtle spatial
dynamics, Airbnb can better align pricing recommendations with what guests are
actually willing to pay.

References:

Airbnb Inc. (2025) About Airbnb: What it is and how it works. Available from:
https://www.airbnb.com.sg/help/article/2503 [Accessed 2nd June 2025].

Bronnenberg, B. J., Dubé, J.-P., & Gentzkow, M. (2012) The Evolution of Brand
Preferences: Evidence from Consumer Migration. Journal of Marketing Research
49(1), 61-73. Available from: https://doi.org/10.1509/jmr.11.0203 [Accessed 7th
June 2025]

Preda, G. (2023) Developing Kaggle Notebooks : Pave Your Way to Becoming a
Kaggle Notebooks Grandmaster. First edition. Birmingham, England: Packt
Publishing Ltd. Available from: https://learning.oreilly.com/library/view/developing-
kaggle-notebooks/9781805128519/Text/Chapter_1.xhtml# idParaDest-16 [Accessed
2" June 2025].

https://www.airbnb.com.sg/help/article/2503
https://doi.org/10.1509/jmr.11.0203
https://learning.oreilly.com/library/view/developing-kaggle-notebooks/9781805128519/Text/Chapter_1.xhtml#_idParaDest-16
https://learning.oreilly.com/library/view/developing-kaggle-notebooks/9781805128519/Text/Chapter_1.xhtml#_idParaDest-16

Appendix A.

Machine Learning code (Phyton) used by the team to analyse the given dataset
“‘“AB_NYC_2019".

Qtitle

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.model selection import train test split

from sklearn.preprocessing import StandardScaler

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Input

from sklearn.compose import ColumnTransformer

from sklearn.preprocessing import StandardScaler, OneHotEncoder
import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.decomposition import PCA

from sklearn.impute import SimpleImputer

from sklearn.linear model import LinearRegression, Ridge, LassoCV,
ElasticNetCV

from sklearn.ensemble import RandomForestRegressor

from sklearn.metrics import mean absolute error, r2 score,

root mean squared error, silhouette score, calinski harabasz score

from sklearn.cluster import KMeans

data = pd.read csv('AB N
data['room type'].unique ()
array (['Private room', 'Entire home/apt', 'Shared room'], dtype=object)

Data Cleaning

Copy data to avoid chained assignment rnings

data encoded data

data encoded = data encoded.copy ()

Step 1: Fill missing v s explicitly as strings

data encoded['last review = data encoded['last review'].fillna('2019-
01-01")

Step 2: Convert to datetime

data encoded['last review'] =

pd.to datetime (data encoded['last revi errors="'coerce')

3: Calculate days

reference date = pd.to datetime('2019-06-30")
data encoded['days since last review'] = (reference date -
data encoded['last review']) .dt.days

Remove top 5% price outliers

upper limit = data encoded['price'].quantile (0.99)
print (£"99th percentile cutoff: S$S{upper limit:.2f}")
data encoded = data encoded[data encoded['price'] <=
upper limit].copy ()

One-hot encode room type and neighbourhood group
data encoded = pd.get dummies (
data encoded, columns=['room type', 'neighbourhood group'],
drop first=
)

Preview result
data encoded

99th percentile cutoff: $799.00
print ("Available columns:", data encoded.columns.tolist ())

Available columns: ['id', 'name', 'host id', 'host name',
'neighbourhood', 'latitude', 'longitude', 'price', 'minimum nights',
'number of reviews', 'last review', 'reviews per month',
'calculated host listings count', 'availability 365',

'days since last review', 'room type Entire home/apt',
'room type Private room', 'room type Shared room',
'neighbourhood group Bronx', 'neighbourhood group Brooklyn',
'neighbourhood group Manhattan', 'neighbourhood group Queens',
'neighbourhood group Staten Island']

print ("Available columns:", data.columns.tolist())

Available columns: ['id', 'name', 'host id', 'host name',
'neighbourhood group', 'neighbourhood', 'latitude', 'longitude',
'room type', 'price', 'minimum nights', 'number of reviews',

'last review', 'reviews per month', 'calculated host listings count',
'availability 365']

X = input feature = reviews_per_month / availability 365 y = what we want to predict =
reviews_per_month

Clustering

Step 1: Define features

cluster features = [
'minimum nights', 'reviews per month', 'latitude', 'longitude',
'calculated host listings count', 'availability 365',

'days since last review',

'room type Entire home/apt', 'room type Private room',

'room type Shared room',
'neighbourhood group Bronx', 'neighbourhood group Brooklyn',

'neighbourhood group Manhattan', 'neighbourhood group Queens',

'neighbourhood group Staten Island'

Step 2: Prepare data
data encoded[cluster features].copy ()
X.fillna(0) # Handle missing values

Step 3: Scale features
scaler = StandardScaler ()
X scaled = scaler.fit transform (X)

Step 4: Reduce to 2D using PCA
pca = PCA(n components=2, random state=42)
X pca = pca.fit transform (X scaled)

Step 5: Try clustering with wvarious k
ks = range (2, 11)
inertias, sil scores, ch scores = [], [], []

for k in ks:
kmeans KMeans (n_clusters=k, random state=42, n init=25)
labels kmeans.fit predict (X pca)
inertias.append(kmeans.inertia)
sil scores.append (silhouette score (X pca, labels))
ch scores.append(calinski harabasz score (X pca, labels))

Step 6: Plot evaluation metrics
plt.figure(figsize=(15, 4))

.subplot (1, 3, 1)

.plot (ks, inertias, marker='o")
.title ("Elbow Method")

.Xlabel ("Number of Clusters")
.ylabel ("Inertia")

.subplot (1, 3, 2)

.plot (ks, sil scores, marker='o', color='green')
.title ("Silhouette Score")

.Xxlabel ("Number of Clusters")

.ylabel ("Silhouette Score")

.subplot (1, 3, 3)
.plot (ks, ch scores, marker='o

color="'red'")
.title ("Calinski-Harabasz Score")
.xlabel ("Number of Clusters")

plt.ylabel ("CH Score")

plt.tight layout ()
plt.show ()

Elbow Method Silhouette Score Calinski-Harabasz Score

120000 100000

90000
100000

80000

80000
70000
60000

silhouette Score
CH Score

60000
40000

50000
20000
40000

Number of Clusters Number of Clusters Number of Clusters

1. Select features for clustering
cluster features = [
'minimum nights', 'reviews per month', 'latitude', 'longitude',
'calculated host listings count', 'availability 365",
'days since last review',
'room type Entire home/apt', 'room type Private room',
'room type Shared room',
'neighbourhood group Bronx', 'neighbourhood group Brooklyn',
'neighbourhood group Manhattan', 'neighbourhood group Queens',

'neighbourhood group Staten Island'

2. Prepare X cluster
X cluster = data encoded[cluster features].copy ()
X cluster = X cluster.fillna (0)

3. Scale
scaler = StandardScaler ()
X cluster = scaler.fit transform(X cluster)

4. Apply KMeans clustering
kmeans = KMeans (n_clusters=5, random state=42, n init=25)

cluster labels = kmeans.fit predict (X cluster)
5. Apply PCA for 2D projection
pca = PCA(n components=2, random state=42)

X pca = pca.fit transform(X cluster)

6. Create DataFrame for plotting

pca df = pd.DataFrame (X pca, columns=['PCl', 'PC2'])

pca df['cluster'] = cluster labels

7. Visualise clusters

plt.figure(figsize=(8, 6))

sns.scatterplot (data=pca df, x='PCl', y='PC2', hue='cluster',
palette="tabl0', alpha=0.6)

.title ("Airbnb Listings Clus

.xlabel ("Principal Lomponent

.ylabel ("Principal Component
.legend (title="'Cluster')
.grid()
.tight layout ()
.savefig ("airbnb

bbox inches='tight'

plt.show ()

Cluster
5 0
1
2
\ 3
4 4 7 W" B -
Lo
o ., “Lionatas
2 21 g K5 'fié?fe"g“:’ﬁe
c > AL FET
g "': e 8 gv"g“""é \\S)M% d;;s%’j £
o 2 . e,
1 3. !
8 0 1 : i o ;':j
T W
2 2
v
£
a
_2 . -
-4 4
_6 . k&
—4 -2 0 2 4 6 8

Principal Component 1

Regression model

features = |

'minimum nights', 'revi er month' atitude ongitude',

calculated host listings count',

Al
=Y 14

]
14

ghbourhood group .] lanha

Prepare featur

data encoded[features] .copy ()

y = np.loglp(data encoded['price'])

Step 2: Handle missing values

imputer = SimplelImputer (strategy='mean')
X imputed = imputer.fit transform (X)

Step 3: Scale
scaler = StandardScaler ()
X scaled = scaler.fit transform(X imputed)

Step 4: Train-test split
X train, X test, y train, y test = train test split(
X scaled, y, test size=0.2, random state=42

Step 5: LassoCV

lasso _cv = LassoCV(alphas=np.logspace (-4, 0, 50), cv=5,
random state=42)

lasso cv.fit (X train, y train)

Step 6: Define models
models = {

"Linear": LinearRegression(),

"Ridge": Ridge (),

"Lasso (CV)": lasso cv,

"Random Forest": RandomForestRegressor (n _estimators=100,
random state=42)

}

Step 7: Evaluate each model

for name, model in models.items () :
model.fit (X train, y train)
y pred log = model.predict (X test)
y pred = np.expml (y pred log)
y _test actual = np.expml (y test)

rmse = root mean squared error (y test actual, y pred)

print (f"\n{name} Results:")
print (f" MAE: S$S{mean absolute error(y test actual, y pred)
f" RMSE: S{rmse:.2f}")

print (f" R?: {r2 score(y test actual, y pred):.3f}")

print

(
(
(
(

Linear Results:
MAE :
RMSE :

Ridge Results:

11

MAE :
RMSE :

Lasso (CV) Results:
MAE :
RMSE :

RMSE :
R?:

Random Forest

Feature list
features = [
'minimum nights', 'reviews per month', 'latitude', 'longitude',
'calculated host listings count', 'availability 365",
'days since last review',
'room type Entire home/apt', 'room type Private room',
'room type Shared room',
'neighbourhood group Bronx', 'neighbourhood group Brooklyn',
'neighbourhood group Manhattan', 'neighbourhood group Queens',
'neighbourhood group Staten Island'

Step 1: Prepare features and target
data encoded[features].copy ()
np.loglp (data encoded['price']) # log-transform target

Step 2: Impute missing values
imputer = SimpleImputer (strategy='mean')
X imputed = imputer.fit transform (X)

Step 3: Scale features
scaler = StandardScaler ()
X scaled = scaler.fit transform(X imputed)

Step 4: Train-test split

X train, X test, y train, y test = train test split(
X scaled, y, test size=0.2, random state=42

Step 5: Train Random Forest

rf model = RandomForestRegressor (n_estimators=100, random state=42)

rf model.fit (X train, y train)

Step 6: Predict and evaluate
y pred log = rf model.predict (X test)

y pred = np.expml (y pred log)
y test actual = np.expml (y test)
print ("\nRandom Forest Results:")
MAE: S{mean absolute error(y test actual, y pred):.2f}

RMSE: ${root mean squared error(y test actual, y pred):.

R?: {r2 score(y test actual, y pred):.3f}")

Plot feature
importances = rf model.feature importances

sorted idx = np.argsort (importances) [::-1]

sorted features = np.array (features) [sorted idx]

plt.figure(figsize=(10, 6))
plt.barh (sorted features, importances[sorted idx])
plt.gca() .invert yaxis()
plt.title ("Random Forest Feature Importances")
plt.xlabel ("Importance")
plt.grid()
.tight layout ()
plt.show ()

Random Forest Results:
MAE: $42.62

RMSE: $74.04
R2: 0.490

Random Forest Feature Importances

”)
Zf}")

room_type_Entire home/apt

longitude

latitude
availability_365
reviews_per_month

days_since_last_review

minimum_nights

neighbourhood_group_Manhattan
calculated_host_listings_count

room_type_Private room

room_type_Shared room -
neighbourhood_group_Queens A
neighbourhood_group_Brooklyn A
neighbourhood_group_Bronx -

neighbourhood_group_Staten Island

T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Importance

SHAP

import shap

X train df = pd.DataFrame (X train, columns=features)
X sample = X train df.sample (1000, random state=42) # sa

shap values = explainer.shap values (X sample)

SHAP summary plot (be "m)
shap.summary plot (shap values, X sample)

here

High
room_type Entire home/apt
longitude

latitude

availability 365

minimum_nights . ..—*_ .
neighbourhood group Manhattan —*‘—-..

room_type Private room —-—-.' .

days_since last_review

Feature value

g
reviews_per _month . -l‘-

calculated host listings count —’—" .
room_type Shared room —"
neighbourhood _group Queens 'I'-
neighbourhood _group_Brooklyn |
neighbourhood _group Bronx i
|.

neighbourhood_group_Staten Island

Low

0.6 —0.4 -02 00 02 0.4 06
SHAP value (impact on model output)

Price prediction model

from tensorflow.keras.layers import Dropout
Features and target
data['log r i np.loglp(datal['revie er month'])

data['log min nights = np.loglp(data['minimum nights'])

14

features = ['minimum nights', 'reviews per month', 'latitude’',
'"longitude’,
'calculated host listings count', 'availability 365",
'days since last review',
'room type Entire home/apt', 'room type Private room',
'room type Shared room', 'neighbourhood group Bronx',
'neighbourhood group Brooklyn',
'neighbourhood group Manhattan', 'neighbourhood group Queens',
'neighbourhood group Staten Island']
numeric_features = ['minimum nights', 'reviews per month', 'latitude',
'"longitude’,
'calculated host listings count', 'availability 365",
'days since last review']
categorical features = ['room type Entire home/apt',
'room type Private room', 'room type Shared room',
'neighbourhood group Bronx',
'neighbourhood group Brooklyn',
'neighbourhood group Manhattan', 'neighbourhood group Queens',
'neighbourhood group Staten Island']

target = 'price'
preprocessor = ColumnTransformer (transformers=]|

('num', StandardScaler (), numeric features),
('cat', OneHotEncoder (drop='"first'), categorical features)

X = data encoded[features]
= np.loglp(data['price'])

X processed = preprocessor.fit transform(X)

X train, X test, y train, y test = train test split (X processed, vy,

test size=0.2, random state=42)

model = Sequential ([
Input (shape=(X train.shapel[l],)),
Dense (128, activation='relu'),
Dropout (0.3),
Dense (64, activation='relu'),
Dropout (0.3),
Dense (1)

1)

model .compile (optimizer="'adam', loss='mse', metrics=['mae'])
history = model.fit (X train, y train, validation split=0.2, epochs=50,

batch size=32, verbose=1)

from tensorflow.keras.layers import Dropout
from tensorflow.keras.callbacks import EarlyStopping

data encoded['log reviews'] =

np.loglp (data encoded['reviews per month'])
data encoded['log min nights'] =

np.loglp (data encoded['minimum nights'])

Feature list
features = [
'minimum nights', 'reviews per month', 'latitude', 'longitude',
'calculated host listings count', 'availability 365",
'days since last review',
'log reviews', 'log min nights',
'room type Entire home/apt', 'room type Private room',
'room type Shared room',
'neighbourhood group Bronx', 'neighbourhood group Brooklyn',
'neighbourhood group Manhattan', 'neighbourhood group Queens',
'neighbourhood group Staten Island'

Feature groups

numeric features = |
'minimum nights', 'reviews per month', 'latitude', 'longitude',
'log reviews', 'log min nights',
'calculated host listings count', 'availability 365",

'days since last review'

]

categorical features = |
'room type Entire home/apt', 'room type Private room',
'room type Shared room',
'neighbourhood group Bronx', 'neighbourhood group Brooklyn',
'neighbourhood group Manhattan', 'neighbourhood group Queens',

'neighbourhood group Staten Island'

Preprocessing
preprocessor = ColumnTransformer (transformers=]|

('num', StandardScaler (), numeric features),

('cat', 'passthrough', categorical features) # Already one-hot
encoded

1)

Define X and y
X = data_encoded[features]

= np.loglp(data encoded['price']) # Log-transformed target

Apply preprocessing

X processed = preprocessor.fit transform (X)

Split data
X train, X test, y train, y test = train test split(
X processed, y, test size=0.2, random state=42

Build model

model = Sequential ([
Input (shape=(X train.shape[l],)),
Dense (128, activation='relu'),
Dropout (0.3),
Dense (64, activation='relu'),
Dropout (0.3),
Dense (1)

1)
model .compile (optimizer="'adam', loss='mse', metrics=['mae'])

Add early stopping

early stop = EarlyStopping (
monitor='val loss',
patience=5,
restore best weights=

Train model

history = model.fit (
X train, y train,
validation split=0.2,
epochs=50,
batch size=32,
callbacks=[early stop],
verbose=1

Evaluate performance in original scale

y pred log = model.predict (X test).flatten()
y pred = np.expml (y pred log)

y test actual = np.expml (y test)

print ("\nEvaluation on actual price scale:")

print (f" RMSE: ${root_mean_squared_error(y_test_actual, y pred):.2f}")

(V

print (f" MAE: ${mean_absolute_error(y_test_actual, y pred):.2f}")
(
(

print (f" R?: {r2 score(y test actual, y pred):.3f}")

import matplotlib.pyplot as plt

.plot (history.history['mae'], label='Train MAE')

.plot (history.history['val mae'], label='Val MAE')
.xlabel ('Epoch')

.legend ()

the figure BEFORE calling plt.show ()

fig("model performance log price.png", bbox inches='tight',

Model Performance with log(price)

1.3 1 —— Train MAE
Val MAE

1.2 -

1.1 -

Mean Absolute Error

min night range = np.arange(l, 31)
sim data = pd.DataFrame ([{
'occupancy ratio': 0.3,
'price': 100,
'minimum nigh : mn,
'availability 5Y8

} for mn in min night range])
sim scaled = scaler.transform(sim data)

Predict demand

predicted demand = model.predict (sim scaled) .

18

pred = model.predict (sim scaled) .flatten()

pd.DataFrame ({
'minimum nights': min night range,
'predicted reviews per month': pred
})
price range = np.linspace (30, 300, 100)

base listing = {
'occupancy ratio': 0.3,
'minimum nights': 2,
'availability 365': 365,
'room type': 'Private room',

'neighbourhood group': 'Brooklyn'

Repeat base listing and vary price
sim data = pd.DataFrame ([
{**base listing, 'price': p} for p in price range

1)

X sim = preprocessor.transform(sim data)

pred demand = model.predict (X sim) .flatten()
sim data['predicted reviews per month'] = pred demand
sim data['estimated revenue'] = sim data['price'] * pred demand
best = sim data.loc[sim data['estimated revenue'].idxmax ()]
print f" Best price: ${best['price']:.2f}")

"l Expected reviews/month:

predicted reviews per month']:.2f}")
f"C} Estimated revenue: $S{best['estimated revenue']:.2f}")

Best price: $300.00
Expected reviews/month: 65.24
CS Estimated revenue: $19572.62

for (ng, rt), group in sim data.groupby (['neighbourhood group',

14
'room type'l]):

plt.plot (group['price'], group['estimated revenue'], label=f"{ng} -
{rti")

.xlabel ("Price")

.ylabel ("Estimated Revenue")

.title ("Revenue Curve per Room Type and Neighbourhood")

.legend ()

.grid/(

.show ()

Revenue Curve per Room Type and Neighbourhood

20000 + .
—— Brooklyn - Private room
17500 A
15000 A

12500

10000

Estimated Revenue

7500 ~

5000 +

2500 +

T T T T T
50 100 150 200 250 300
Price

mport shap

explainer = shap.Explainer (model, X train)

shap values = explainer (X test[:100])
shap.plots.beeswarm(shap values)

feature names = preprocessor.get feature names out ()
print (feature names)

data price = datal[data['price'] > 0]

~aw boxplot
.figure (figsize=(10, 6))

sns.boxplot (x=data price['price'])

.title ('Boxplot of Airbnb Prices in NYC')

.xlabel ('Price ($)'

.x1im (0, 5000) # adjust to ignore extreme outliers in v
.grid/()

.show ()

20

Boxplot of Airbnb Prices in NYC

h QDO E-O-00000-0aapcco 00— 0O 00 OO 00®m 15 4

T T T T
0 1000 2000 3000 4000 5000
Price (%)

upper limit = data['price'].quantile (0.99) # top 1% cutoff
print (£"99th percentile cutoff: S${upper limit:.2f}")

data price = data[data['price'] <= upper limit]
= data['price'].quantile (0.25)
= data['price'].quantile (0.75)

IOR = Q3 - 01

lower bound = Q1 - 1.5 * IQR

upper bound = Q3 + 1.5 * IQR

print (f"Lower bound: {lower bound:.2f}, Upper bound:
{upper bound:.2f}")
Handle missing last review
data['last review'] = data['last review'].fillna('2019-01-01") # Fill
missing
= pd.to datetime(data['last review'])

Convert to da

reference date .to datetime ('2019-06-30")

refere
= (reference date -
Calculate

missing count = data['zr m type'].isna () .sum()
print (f"Missing values in 'room type': {missing count}")
Log Price comparison

import seaborn as sns

21

import matplotlib.pyplot as plt
import numpy as np

plt.

plt.

sSns

plt.

sSns

plt.
plt.

Count

22

3000 4

2500 4

2000 4

figure (figsize=(12, 4))

subplot (1, 2, 1)

.histplot (data['price'], bins=100)
plt.

title("Original Price Distribution")

subplot (1, 2, 2)

.histplot (np.loglp (datal['pric bins=100)
plt.

title ("Log-Transformed Price Distribution")

tight layout ()
show ()

Original Price Distribution

Log-Transformed Price Distribution

3000

2500

2000

1500 4

1000 4

500

350 0 1
price

[S@

price

	Data Cleaning
	Clustering
	Regression model
	Random Forest
	SHAP
	Price prediction model
	Log Price comparison

