

Slide 1
Hello, my name is Ana Stoica and today I will present the practical implementation of the Multi-Agent System for academic literature retrieval, developed as a continuation of the Unit 6 design brief.

Slide 2 – Overview 

In this presentation, I will briefly describe the problem we aimed to address, the overall architecture of the system, and the reasoning behind key implementation choices. I will also go through the process of demonstrating and testing the code, followed by some limitations and potential future improvements, ending with concluding remarks.
This project expands the theoretical design created earlier with an actual working Python implementation, showing how a conceptual multi-agent framework can be realized in practice while maintaining simplicity and ethical data handling.

Slide 3 – Introduction
The focus of our project in Unit 6 was the traditional, manual process of conducting literature reviews. These methods, if we can still call them that, are often outdated, highly time-consuming, and prone to inconsistency, which frequently leads to incomplete coverage of the available academic literature (1).
Researchers spend hours searching across multiple repositories, downloading metadata, and manually recording information. While some tools exist to help on the recording side, such as Mendeley’s Web Importer (2), these still rely on manual browsing and user interaction.
Previous automation attempts have been made, but with minimal success (3). However, with the rise of machine learning, there is now a real opportunity to approach this long-standing issue differently.
The aim of this project was to automate the retrieval of structured metadata, such as titles, authors, abstracts, DOIs, and publication years, and compile everything into a consistent dataset that researchers can use for further analysis.
Ultimately, the project’s purpose is not just to reduce manual workload, but also to improve the reliability, reproducibility, and scalability of the literature retrieval process.

Slide 4 – Solution
To tackle the problem of automating literature retrieval, we designed a Multi-Agent System inspired by the Belief, Desire, Intention model. The goal was to create an architecture where each agent focuses on a specific subtask while maintaining coordination and flow through an orchestrator.
Initially, the plan was to use Python’s ecosystem for ethical web scraping, following good practices such as consulting the robots.txt protocol to ensure compliance. However, when implementation began, I was hesitant to rely on scraping because it can easily become unreliable, and even ethical scraping may break when websites change their structure.
Instead, I turned my attention to a more stable and transparent solution, using Crossref’s REST API (4). My initial thought was to connect using Python’s requests library together with BeautifulSoup4, similar to traditional scraping setups (5). But during research, I came across a short article demonstrating the use of the habanero library (6, 7).
habanero provides a clean and simple interface for querying the Crossref API. It allows direct retrieval of metadata in a structured JSON format, handling details like URL construction and error responses internally. Compared to requests, which is powerful but bulky and requires more manual handling, habanero is straight-forward and more beginner-friendly.
This choice allowed the system to remain transparent, avoiding overcomplications and aligned with open data principles while offering a safer solution that the possible complications of web scraping.

Slide 5 – Architecture
The system consists of several function-based agents, coordinated by an OrchestratorAgent. Each agent performs a specific task, such as retrieval, extraction, or storage, while the orchestrator manages the overall workflow and communication between them.
This structure preserves the modular and sequential logic of the original BDI-inspired design. It ensures that each step is logically dependent on the previous one, and it makes the entire process easy to understand, debug, and extend in future iterations.
Here is how the process flows.
The system consists of three main agents coordinated by an OrchestratorAgent: the SearchAgent, the ExtractionAgent, and the StorageAgent. The OrchestratorAgent receives a query from the user and passes it to the SearchAgent. The SearchAgent queries the Crossref REST API through the habanero library and returns a curated list of articles. This list is then passed to the ExtractionAgent, which preprocesses and validates the metadata, ensuring only complete entries move forward, followed by a transformation step that removes duplicates and formats author names consistently.
Finally, the StorageAgent saves the processed and validated metadata into a structured JSON file. This setup creates a clear, linear flow of information where each agent’s output becomes the next agent’s input.

Slide 6 – Key Components and Choices
There are three main implementation decisions behind this system.
First, I chose to use the Crossref API via habanero instead of web scraping. This decision was made to ensure both ethical compliance and a reliable data source. The data retrieved through Crossref is structured and is continually updated by publishers, making the results consistent and easy to get. It also removes the need to check accessibility manually, such as consulting robots.txt files for every page or section.
Second, the validation process focuses on ensuring metadata completeness. Initially, I planned to include several fields, but I found that some were often missing or inconsistent, such as the authors fields. As you can see in the code, I decided to limit validation to the most universally present and essential fields: title, DOI, and year. These fields provide a sufficient foundation for later data analysis or expansion.
Third, the transformation phase handles data normalization and deduplication. It identifies duplicate entries based on DOIs and standardizes author names by formatting them consistently and removing irregular capitalization. This ensures that the resulting dataset is both human-readable and machine-processable.
Together, these three components, ethical retrieval, metadata validation, and transformation, make the system reliable, lightweight, and adaptable to future changes.

Slide 7 – Running and Testing
In a typical run, the orchestrator begins by prompting the user with a search term. Once a query is provided, the Search Agent contacts the Crossref API through habanero and returns a list of relevant records, printing the number of articles found.
Each record’s metadata, including the title, authors, DOI, publication year, abstract, and URL, is then cleaned and validated. Incomplete entries and duplicates are removed. After this extraction step, the final output is written to a structured JSON file named cleanedresults.json.
This file can be opened in any text editor or imported into tools like Excel. I also included a small timer to measure how long the full process takes, which gives useful insight into performance and efficiency.
To verify correctness, I implemented a simple automated test. This test checks whether at least one valid record is retrieved, ensures that DOI validation works properly, and confirms that the storage process successfully creates and writes to the JSON file.
This testing approach demonstrates that each agent functions independently and that the orchestrator successfully integrates all components into a coherent workflow.

Slide 8 – Ethical and Technical Aspects
By relying on Crossref’s official API rather than HTML scraping, the system avoids ethical issues such as violating site policies or server overloading. I also limited API calls to a small number of results to keep the system polite and efficient. This made the agent lightweight and quick to execute, but it introduced certain limitations.
First, not all metadata is complete, and this is a broader issue in academia, not a flaw of the system itself, but still a very present one as I was able to see for myself when checking the cleanedresults file. Studies have shown that metadata quality and availability varies across publishers and is very often incomplete (1). Missing abstracts, incomplete author lists, or even difficulties in identifying the publishers are common challenges researchers face.
Second, limiting the number of results affects the diversity of retrieved records. I figured out quickly that my code only retrieves the first max_results number of results. Initially, I experimented with randomization by increasing the limit to 20 and shuffling within that set, I found this to be redundant and unnecessary. I decided to prioritize consistency and simplicity over randomization.
All outputs are saved in JSON format, which preserves metadata structure and supports Unicode, ensuring that multilingual author names and titles are represented accurately.
Overall, the system adheres to open data and reproducibility principles. Every step is clear, and the entire workflow can be replicated by any user with an API connection.

Slide 9 – Limitations and Future Work
This implementation focuses exclusively on metadata retrieval, not full-text access or analysis. In this situation, it cannot perform more complicated tasks and finding more detailed results is limited by the first results of Crossref. It also depends on Crossref’s coverage, which is not universal unfortunately. Some fields, especially those outside mainstream science, may have sparse metadata or inconsistent indexing.
Additionally, the system can encounter network-related issues such as timeouts when querying the API. I experienced this firsthand when testing with common words like “machines” or “cheese,” and while testing with my test_main.py code. Future improvements could include integrating additional APIs such as PubMed, or enabling the system to run agents in parallel, significantly improving speed.
Another direction would be to increase autonomy, for example making the agents capable of reformulating search queries when no valid data is found, or automatically retrying after a network timeout.
Finally, filters such as publication year, subject category, or keywords could be added to refine results. Each of these additions would increase the flexibility of the system and bring it closer to a fully autonomous, research-supporting assistant.

Slide 10 – Conclusions
In conclusion, the project demonstrates how a BDI-inspired Multi-Agent System can automate literature retrieval in an ethical and simple way. The sequential agent-based structure comprised of simple steps make reproductions and adaptations easy. The system and the code are simple, but reliable and meet the key assignment goals: identifying, processing, and storing research data ethically and efficiently. The implementation successfully covers the theoretical design and provides a functional code, proving that even a modest system can significantly improve efficiency and consistency in academic research workflows.

Thank you for listening.


Slide 11 - References:
1. Gregg, W. J., Erdmann, C., Paglione, L. A. D., Schneider, J., & Dean, C. (2025) ‘A literature review of scholarly communications metadata’, Research Ideas and Outcomes, 5, e38698. Available at: https://doi.org/10.3897/rio.5.e38698 (Accessed 12 October 2025)
2. Mendeley. (n.d.) Mendeley Web Importer [Software]. Elsevier. Available at: https://www.mendeley.com/reference-management/web-importer (Accessed 12 October 2025)
3. Chapman, A. L., Morgan, L. C., & Gartlehner, G. (2009) ‘Semi-automating the manual literature search for systematic reviews increases efficiency’, Health Information & Libraries Journal, 26(4), pp. 310–316. Available at: https://doi.org/10.1111/j.1471-1842.2009.00865.x (Accessed 12 October 2025)
4. Hendricks, G., Tkaczyk, D., Lin, J., & Feeney, P. (2020) ‘Crossref: The sustainable source of community-owned scholarly metadata’, Quantitative Science Studies, 1(1), pp. 414–427. Available at: https://doi.org/10.1162/qss_a_00022 (Accessed 12 October 2025)
5. Mishra, R. (2025) ‘Web Scraping for Job Listings Using Python and BeautifulSoup’, Scientific Journal of Artificial Intelligence and Blockchain Technologies, 2(3), pp. 63–70. Available at: https://doi.org/10.63345/sjaibt.v2.i3.308 (Accessed 12 October 2025)
6. Donathan II, D., Nason, M., Tullney, M., Shi, J., & Alperin, J. P. (2025) ‘Evaluating Multilingual Metadata Quality in Crossref’, arXiv preprint arXiv. Available at: https://doi.org/10.48550/arXiv.2503.11853 (Accessed 12 October 2025)
7. Scott, S. (n.d.) Habanero: R and Python interface to the Crossref REST API. Available at: https://github.com/sckott/habanero (Accessed: 12 October 2025)
